作业帮 > 综合 > 作业

三角函数与向量设向量a=(4cosα,sinα)b=(cosβ,-4sinβ)1、若a与b-2c垂直 求tan(α+β)

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/19 01:12:26
三角函数与向量
设向量a=(4cosα,sinα)b=(cosβ,-4sinβ)
1、若a与b-2c垂直 求tan(α+β)的值
2、求|b+c|的最大值
3、若tanαtanβ=16 求证a//b
俄 不好意思 a=(4cosα,sinα) c=(cosβ,-4sinβ) b=(sinβ,4cosβ)
三角函数与向量设向量a=(4cosα,sinα)b=(cosβ,-4sinβ)1、若a与b-2c垂直 求tan(α+β)
-2c=(sinβ,4cosβ)-2(cosβ,-4sinβ)
=(sinβ-2cosβ,4cosβ+8sinβ).
a与b-2c垂直 ,则有
4cosa*(sinβ-2cosβ)+sina*(4cosβ+8sinβ)=0
sina*cosβ+cosa*sinβ-2(cosa*cosβ-sina*sinβ)=0
sin(a+β)=2cos(a+β)
tan(a+β)=2.
2.b+c=(sinβ+cosβ,4cosβ-4sinβ),
|b+c|=√[(sinβ+cosβ)^2+(4cosβ-4sinβ)^2]
=√[17-30sinβ*cosβ]
=√[17-15*sin(2β)].
只有当sin(2β)=-1时,|b+c|有最大值,
|b+c|最大=4√2.
3.tanαtanβ=16 ,
(sina*sinβ)/(cosa*cosβ)=16,
sina*sinβ=16*cosa*cosβ,
若,a//b,则有
sina/4cosa=4cosβ/sinβ,
sina*sinβ=16*cosa*cosβ.
而,(sina*sinβ)/(cosa*cosβ)=16,
sina*sinβ=16*cosa*cosβ,成立.
则,a//b,成立.命题得证.