如图,AB、CD交于E,且AC=BD,∠A+∠B=180°,求证:CE=DE.(用2~3种方法)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 09:59:41
如图,AB、CD交于E,且AC=BD,∠A+∠B=180°,求证:CE=DE.(用2~3种方法)
法一:
过点D作DF∥AB,延长CA交DF于F.
∵∠CAB+∠B=180°,
∴∠BAF=∠B;
∵DF∥AB,
∴AF=BD=AC,
∴CE=DE.
法二:
在AE上取一点G,使得CG=AC.
∵CG=AC,
∴∠A=∠CGA.
∵∠A+∠B=180°,∠CGA+∠CGB=180°,
∴∠CGB=∠B;
又∵BD=AC=CG,∠CEG=∠BED,
∴△CEG≌△BED,
∴CE=DE.
法三:
延长AB,在AB延长上取一点H,使得DH=BD.原理同上
过点D作DF∥AB,延长CA交DF于F.
∵∠CAB+∠B=180°,
∴∠BAF=∠B;
∵DF∥AB,
∴AF=BD=AC,
∴CE=DE.
法二:
在AE上取一点G,使得CG=AC.
∵CG=AC,
∴∠A=∠CGA.
∵∠A+∠B=180°,∠CGA+∠CGB=180°,
∴∠CGB=∠B;
又∵BD=AC=CG,∠CEG=∠BED,
∴△CEG≌△BED,
∴CE=DE.
法三:
延长AB,在AB延长上取一点H,使得DH=BD.原理同上
如图,AB、CD交于E,且AC=BD,∠A+∠B=180°,求证:CE=DE.
如图,AB、CD交于E,∠A+∠B=180,求证:CE=DE(三种不同方法)
如图,在△ABC中,∠A与∠B互余,CD⊥AB,垂足为点D,DE∥BC,交AC于点E,求证:AD:AC=CE:BD.
已知如图,AB.CD交与E,且AC等于BD,∠A+∠B=180º.求证:CE=DE
已知,如图△ABC中,AB=AC,∠A=90°,∠ACB的平分线CD交AB于点E,∠BDC=90°,求证:CE=2BD.
如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.
6.如图,在圆o中,AB为直径,弦CD交AB于点E,且OE=CE,求证:弧BD=3弧AC.
如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.
已知如图,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC,求证BE=CD
如图,在三角形ABC中,AB=CD,∠A=90°,D是AC上一点,CE⊥BD于点E,且CE=二分之一BD.求证:BD平分
(1)已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:B
如图,在△ABC中,∠B=∠ACB,点D在AB边上,点E在AC边的延长线上,且BD=CE,连接DE交BC于点F,求证DF