作业帮 > 数学 > 作业

如图,点D是△ABC的边BC延长线上一点,BE平分∠ABC,CE平分∠ACD 求证:∠BAC=2∠BEC

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 00:15:57
如图,点D是△ABC的边BC延长线上一点,BE平分∠ABC,CE平分∠ACD 求证:∠BAC=2∠BEC

如图,点D是△ABC的边BC延长线上一点,BE平分∠ABC,CE平分∠ACD 求证:∠BAC=2∠BEC
证明:
∵∠ACD=∠BAC +∠ABC,CE平分∠ACD
∴∠ECD=∠ACD/2=(∠BAC +∠ABC)/2
∵BE平分∠ABC
∴∠EBC=∠ABC/2
∴∠ECD=∠BEC+∠EBC=∠BEC+∠ABC/2
∴∠BEC+∠ABC/2=(∠BAC+∠ABC)/2
∴∠BAC=2∠BEC