已知数列{an}中,a1=5,an=2an-1+2的n此方-1(n为大于等于2的正整数),是否存在实数y,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 15:53:05
已知数列{an}中,a1=5,an=2an-1+2的n此方-1(n为大于等于2的正整数),是否存在实数y,
使得数列{an+y\2的n次方}为等差数列?若存在,求出y的值.若不存在,请说明理由
使得数列{an+y\2的n次方}为等差数列?若存在,求出y的值.若不存在,请说明理由
a1=5 a1/2=5/2
an=2a(n-1)+2^n-1
an/2^n=a(n-1)/2^(n-1)-1/2^n
an/2^n-a(n-1)/2^(n-1)=-1/2^n
a(n-1)/2^(n-1)-a(n-2)/2^(n-2)=-1/2^(n-1)
…………
a2/2^2-a1/2^1=1/2^2
累加
an/2^n-a1/2=1/2^2+1/2^3+...+1/2^n
an/2^n=5/2+(1/4)[1-1/2^(n-1)]/(1-1/2)=5/2+1/2-1/2^n=3-1/2^n
an=3×2^n-1
a(n-1)=3×2^(n-1)-1
若数列{(an+y)/2^n}为等差数列,则数列后项与前项差为常数.
(an+y)/2^n-[a(n-1)+y]/2^(n-1)
=3+(y-1)/2^n-3-(y-1)/2^(n-1)
=(y-1)/2^n-2(y-1)/2^n
=(1-y)/2^n
分母2^n为变量,要(1-y)/2^n为常数,只有分子=0,即1-y=0 y=1 ,此时,数列公差为0
数列变为{(an+1)/2^n}
(a1+1)/2=(5+1)/2=3
数列{(an+1)/2^n}是首项为3,公差为0的等差数列,也是各项均为3的常数数列.
再问: 关于1/2^2+1/2^3+...+1/2^n是怎么转化成(1/4)[1-1/2^(n-1)]/(1-1/2)的?{前面那个5/2是a1倒是知道}
an=2a(n-1)+2^n-1
an/2^n=a(n-1)/2^(n-1)-1/2^n
an/2^n-a(n-1)/2^(n-1)=-1/2^n
a(n-1)/2^(n-1)-a(n-2)/2^(n-2)=-1/2^(n-1)
…………
a2/2^2-a1/2^1=1/2^2
累加
an/2^n-a1/2=1/2^2+1/2^3+...+1/2^n
an/2^n=5/2+(1/4)[1-1/2^(n-1)]/(1-1/2)=5/2+1/2-1/2^n=3-1/2^n
an=3×2^n-1
a(n-1)=3×2^(n-1)-1
若数列{(an+y)/2^n}为等差数列,则数列后项与前项差为常数.
(an+y)/2^n-[a(n-1)+y]/2^(n-1)
=3+(y-1)/2^n-3-(y-1)/2^(n-1)
=(y-1)/2^n-2(y-1)/2^n
=(1-y)/2^n
分母2^n为变量,要(1-y)/2^n为常数,只有分子=0,即1-y=0 y=1 ,此时,数列公差为0
数列变为{(an+1)/2^n}
(a1+1)/2=(5+1)/2=3
数列{(an+1)/2^n}是首项为3,公差为0的等差数列,也是各项均为3的常数数列.
再问: 关于1/2^2+1/2^3+...+1/2^n是怎么转化成(1/4)[1-1/2^(n-1)]/(1-1/2)的?{前面那个5/2是a1倒是知道}
An中a1=5 an=2An-1 n大于等于2 n属于N+ 问是否存在实数λ,使数列{
已知数列{An}满足=2An-1+2^n-1(n属于正整数,n大于等于2)且A4=81.是否存在一个实数
已知数列{an}中,a1=1,且3an=an-1加6【n大于等于2,n属于正整数】,求通项公式an.
已知数列an中,a1=5,且an=2a(n-1)+2^n-1(n大于等于2,n属于正整数)
已知数列{an}中,a1=2,且an+1=an+n+2的n次方,n为正整数,求通项公式an
已知数列{An}中,A1=1,An=3^(n-1)*An-1(n大于等于2,n属于正整数),求
已知数列{an}的首项a1=1,且{an}满足an=n(n+an-1),其中n大于等于2,求{an}的通项
在数列{an}中,a1=1,Sn=a1+a2+…+an,an=2Sn-1(此处n-1为下标)(n大于等于2)求数列an的
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
数列(an)=2an-1+2^n+1(n为正整数,n大于等于2),a3=27求a1,a2的值.
在数列an中,a1=1,an=2an-1 + n+2/n(n+1),(n大于等于2,n属于正整数),猜想an的通项公式,
已知数列前n项和为Sn,且满足Sn=2an-3n(n属于正整数) 1求数列an的通项公式 2数列an中是否存在连续的三项