条件收敛,求收敛性,如果收敛是条件收敛还是绝对收敛,
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 05:57:23
条件收敛,
求收敛性,如果收敛是条件收敛还是绝对收敛,
求收敛性,如果收敛是条件收敛还是绝对收敛,
想证明条件收敛,还是想求和?
再问: 条件收敛
再答: 条件收敛好证明,
设an=(-1)^(n-1) n/(n+1)^2
bn=1/n
那么lim (|an|/bn)= lim [n^2/(n+1)^2]=1
所以∑|an|和∑bn敛散性一致,因为∑bn=∑(1/n)是发散的,所以∑|an|发散。。。
但是lim an=0,
且|a(n+1)| -|an|
=(n+1)^2/(n+2)^2-n^2/(n+1)^2
=[(n+1)^3-n^2(n+2)^2] / [(n+1)^2(n+2)^2]
=[-(n+1/2)^2+3/4] / [(n+1)^2(n+2)^2]
很明显,当n>=1时候,-(n+1/2)^2+3/4
再问: 条件收敛
再答: 条件收敛好证明,
设an=(-1)^(n-1) n/(n+1)^2
bn=1/n
那么lim (|an|/bn)= lim [n^2/(n+1)^2]=1
所以∑|an|和∑bn敛散性一致,因为∑bn=∑(1/n)是发散的,所以∑|an|发散。。。
但是lim an=0,
且|a(n+1)| -|an|
=(n+1)^2/(n+2)^2-n^2/(n+1)^2
=[(n+1)^3-n^2(n+2)^2] / [(n+1)^2(n+2)^2]
=[-(n+1/2)^2+3/4] / [(n+1)^2(n+2)^2]
很明显,当n>=1时候,-(n+1/2)^2+3/4