一道二阶偏导数Z=e^xy乘sin xy 的四个二阶偏导数.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:54:56
一道二阶偏导数
Z=e^xy乘sin xy 的四个二阶偏导数.
Z=e^xy乘sin xy 的四个二阶偏导数.
z=e^(xy)*sin(xy)
dz/dx=ye^(xy)*sin(xy)+ye^(xy)*cos(xy)=ye^(xy)*[sin(xy)+cos(xy)]
dz/dy=xe^(xy)*sin(xy)+xe^(xy)*cos(xy)=xe^(xy)*[sin(xy)+cos(xy)]
d²z/dx²=y²e^(xy)[sin(xy)+cos(xy)]+ye^(xy)[ycos(xy)-ysin(xy)]
=2y²e^(xy)*cos(xy)
d²z/dy²=x²e^(xy)[sin(xy)+cos(xy)]+xe^(xy)[xcos(xy)-xsin(xy)]
=2x²e^(xy)*cos(xy)
d²z/dxdy=[ye^(xy)]'*[sin(xy)+cos(xy)]+ye^(xy)*[sin(xy)+cos(xy)]'
=[(1+x)e^(xy)][sin(xy)+cos(xy)]+ye^(xy)*[xcos(xy)-xsin(xy)]
=e^(xy)*{(1+x)[sin(xy)+cos(xy)+xy[cos(xy)-sin(xy)]}
=d²z/dydx
(偏导符打不出来,用d代替)
dz/dx=ye^(xy)*sin(xy)+ye^(xy)*cos(xy)=ye^(xy)*[sin(xy)+cos(xy)]
dz/dy=xe^(xy)*sin(xy)+xe^(xy)*cos(xy)=xe^(xy)*[sin(xy)+cos(xy)]
d²z/dx²=y²e^(xy)[sin(xy)+cos(xy)]+ye^(xy)[ycos(xy)-ysin(xy)]
=2y²e^(xy)*cos(xy)
d²z/dy²=x²e^(xy)[sin(xy)+cos(xy)]+xe^(xy)[xcos(xy)-xsin(xy)]
=2x²e^(xy)*cos(xy)
d²z/dxdy=[ye^(xy)]'*[sin(xy)+cos(xy)]+ye^(xy)*[sin(xy)+cos(xy)]'
=[(1+x)e^(xy)][sin(xy)+cos(xy)]+ye^(xy)*[xcos(xy)-xsin(xy)]
=e^(xy)*{(1+x)[sin(xy)+cos(xy)+xy[cos(xy)-sin(xy)]}
=d²z/dydx
(偏导符打不出来,用d代替)
求函数z=sin(xy)二阶偏导数
z=sin(xy)+cos^2(xy)一阶偏导数
z=sin(xy)+cos(的平方)(xy) 求函数的偏导数,
计算函数z=x²sin(xy)的偏导数∂z/∂x
xy+e^(xy)=1,求y的导数
z=arcsin(xy)求这个函数的二阶偏导数
6、设z=(x^2)*ln(2xy),求z对x的一阶,二阶偏导数,和z对y的一阶,二阶偏导数
求函数Z=x^xy的偏导数
求函数z=xy+x/y的偏导数
求函数的偏导数 z=arcsin(xy)
求函数z=xy+sinx的偏导数
求函数z=f(x^2y,xy^2)的二阶偏导数∂^2z/∂x^2 其中f具有二阶连续偏导数