设函数f(x)=e∧x-(x/ax+1)-1(e为自然对数的底数)(1)当a=0时,求f(x)的最小值(2)设当x大于.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 04:03:26
设函数f(x)=e∧x-(x/ax+1)-1(e为自然对数的底数)(1)当a=0时,求f(x)的最小值(2)设当x大于...
设函数f(x)=e∧x-(x/ax+1)-1(e为自然对数的底数)(1)当a=0时,求f(x)的最小值(2)设当x大于等于0时,f(x)大于等于0,求a的取值范围
设函数f(x)=e∧x-(x/ax+1)-1(e为自然对数的底数)(1)当a=0时,求f(x)的最小值(2)设当x大于等于0时,f(x)大于等于0,求a的取值范围
a=0时,
f(x)=e∧x-x-1
f'(x)=e^x-1
令f'(x)=0,即e^x=1解得x=0
∴x0,f(x)递增
∴f(x)min=f(0)=1-0-1=0
(2)
f(x)=e∧x-x/(ax+1)-1
f(0)=1-0-1=0
∵x≥0时,f(x)≥0
f‘(x)=e^x-1/(ax+1)²
=[e^x(ax+1)²-1]/(ax+1)²
当a≥0时,ax+1≥1,e^x≥1
∴e^x(ax+1)²-1≥0
∴f'(x)≥0恒成立,f(x)为增函数
∴f(x)≥f(0)=0符合题意
当a0
与已知x≥0时,f(x)≥0矛盾
∴a的范围是[0,+∞)
f(x)=e∧x-x-1
f'(x)=e^x-1
令f'(x)=0,即e^x=1解得x=0
∴x0,f(x)递增
∴f(x)min=f(0)=1-0-1=0
(2)
f(x)=e∧x-x/(ax+1)-1
f(0)=1-0-1=0
∵x≥0时,f(x)≥0
f‘(x)=e^x-1/(ax+1)²
=[e^x(ax+1)²-1]/(ax+1)²
当a≥0时,ax+1≥1,e^x≥1
∴e^x(ax+1)²-1≥0
∴f'(x)≥0恒成立,f(x)为增函数
∴f(x)≥f(0)=0符合题意
当a0
与已知x≥0时,f(x)≥0矛盾
∴a的范围是[0,+∞)
已知a属于实数,函数f(x)=(-x+ax)e^x(x属于实数,e为自然对数的底数) (1)当a=2时,求函数f(x)的
已知函数f(x)=e^x(ax^2+x.)其中e是自然对数的底数,a属于R(1)当a大于0时,解不等式f(x)≤0
已知函数f(x)=e^x(x2+ax+2) 其中a属于R、(e为自然对数的底数) (1)当a=0时,求函数f(x)的图象
设a∈R 求函数f(x)=e^-x(a+ax-x²)(e为自然对数的底数)的单调区间与极值
设函数f(x)=e^x+x-a(a∈R,e为自然对数的底数)
设函数f(x)=p(x-1/x)-2Inx,g(x)=2e/x(p是实数,e为自然对数的底数)
设函数f(x)=p(x-1/x)-Inx,g(x)=2e/x(p是实数,e为自然对数的底数)
已知函数f(x)=(x^2+ax-2a-3)e^-x,其中a>0,e为自然对数的底数.(1)求
设函数f(x)=ex-x(e为自然对数的底数).
f(x)=x(e^x-1)-ax^2,a∈R,其中e为自然对数的底数.(II)若当x≥0时,f(x)≥0恒成立,求实数a
已知f(x)=(ax^2+x)e^x,其中e是自然对数的底数,a属于R(1)当a小于0,解不等式f(x大于0)
已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数). (1)求函数f(x)的最小值; (2)若f(x)≥0对