设向量组(1):a1,a2,a3; (2):a1,a2,a3,a4; (3):a1,a2,a3,a5. 已知秩(1)=秩
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:47:19
设向量组(1):a1,a2,a3; (2):a1,a2,a3,a4; (3):a1,a2,a3,a5. 已知秩(1)=秩(2)=3,秩(3)=4,
求证a1,a2,a3,2a4+a5线性无关
求证a1,a2,a3,2a4+a5线性无关
R(1)=3,因此a1,a2,a3线性无关;R(2)=3,说明a1,a2,a3,a4线性相关,所以a4可以用a1,a2,a3线性表示(定理).
若a1,a2,a3,2a4+a5线性相关,由a1,a2,a3线性无关知,2a4+a5可由a1,a2,a3线性表示,而已知a4可以用a1,a2,a3线性表示,所以a5也可由a1,a2,a3线性表示.而题目中给出的R(3)=4说明a1,a2,a3,a5线性无关,因此产生矛盾,原命题得证.
我这里是给你的定性说法,线性表示你可以直接设a4=Aa1+Ba2+Ca3等等反正意思一样.
若a1,a2,a3,2a4+a5线性相关,由a1,a2,a3线性无关知,2a4+a5可由a1,a2,a3线性表示,而已知a4可以用a1,a2,a3线性表示,所以a5也可由a1,a2,a3线性表示.而题目中给出的R(3)=4说明a1,a2,a3,a5线性无关,因此产生矛盾,原命题得证.
我这里是给你的定性说法,线性表示你可以直接设a4=Aa1+Ba2+Ca3等等反正意思一样.
向量组(1)a1,a2,a3(2)a1,a2,a3,a4(3)a1,a2,a3,a5 R(1)=R(2)=3,R(3)=
设A=(a1,a2,a3,a4,a5),a1,a3,a5线性无关,a2=3a1-a3-a5,a4=2a1+a3+6a5,
已知向量组I:a1,a2,a3;II:a1,a2,a3,a4;III:a1,a2,a3,a5.如果各向量组的秩分别为R(
设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求
已知a1,a2,a3,a4,a5是5个整数且a1=1,a5=6,求证a2-a1,a3-a2,a4-a3,a5-a4中至少
设向量组a1,a2,a3,a4的秩是3,向量组a1,a2,a3,a5的秩是4,则向量组a1,a2,a3,a5-a4的秩是
设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+
已知向量组a1,a2,a3,a4线性无关,则向量组2a1+a3+a4,a2-a4,a3+a4,a2+a3,2a1+a2+
设n维向量组A1 ,A2 ,A3,A4,A5,线性无关,B1=A1+A2,B2=A2+A3,B3=A3+A4,B4=A4
已知向量组a1,a2,a3,a4,A=(a1,a2,a3),B=(a2,a3,a4,R(A)=2,R(B)=3,证明a1
设向量组a1,a2,a3,a4,a5线性相关,而向量组a2,a3,a4,a5线性无关,则向量组a1,a2,a3,a4,a
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不