初中几何竞赛题 在圆O中:PA,PB为两条切线,PCD为割线,过C的切线与DA延长线交于E,与AC交于F,连接DF,BE
高二几何证明题过圆外一点P向圆O做切线PA、PB及割线PCD,过C作PA的平行线,分别交AB,AD于E、F,求证CE=E
半径为6cm的圆O外一点P引圆的切线PA、PB,连接PO交圆O于F,过F作圆O的切线交PA、PB分别于D、E,如果PO=
如图,PA、PB分别切圆O于A、B,并与圆O的另一条切线分别交于D、C两点,PA=7,C△PCD为
在三角形ABC中AB=BC,以AB为直径的圆O交AC于D,过点D向DF垂直于BC交AB延长线于点E,垂足为F,DE是切线
PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E.
四点共圆的运用PA,PB 是圆O的两条切线,A,B为切点.D是弧AB上一点,过D点作圆O的切线分别交PA,PB于E,F,
PA.PB切圆o于A.B两点,过P 作切线,叫与圆于C.D,过B作BE平行于CD,连接AE交PD于M,求证M为DC的中点
如图,PA,PB分别与圆O相切于点A、B,圆O的切线EF分别交PA、PB与点E、F,切点C在弧AB上,若PA长为2,则三
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于D,交AC于E,以B为切点的切线交OD延长线于F.求证EF与圆
如图,点P是圆o外的一点,PA,PB为圆o的两条切线,E为PB的中点,连接EA,交圆O与D点,连接PD并延长,交圆O于C
已知AB为圆O的直径,过圆O上的点C的切线交AB的延长线于的E,AD垂直EC于点D且 交圆O于点F,连接BC,CF,AC
如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,若PA长为2