∫e^((x^2+y^2)^(1/2))ds,其中L为圆周x^2+y^2=a^2,直线y=x及x轴在第一象限所围成的扇形
高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的
第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0
求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2
求∫∫xdσ,其中D是由直线y=x,y=0及曲线x^2+y^2=4,x^2+y^2=1所围成在第一象限内的闭区域.
求一道二重积分:计算∫∫√(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=4及坐标轴所围成的在第一象限内
计算二重积分:∫∫(D)1/(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的
计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的
求曲线积分∫根号(x^2+y^2)ds,其中L为圆周x^2+y^2=-2y
∫∫根号下(x^2+y^2) dxdy,其中D是由圆x^2+y^2=a^2及x^2+y^2=ax所围成区域在第一象限的部
设二元随机变量(X,Y)在由x,y轴及直线x+y+1=0所围成的区域上服从均匀分布,求E(X),E(2X-3Y),E(X
∫∫e^(y-x/y+x)dxdy,其中d是由x轴,y轴和直线x+y=2所围成的闭区域
计算∮(x^2-2y)dx+(3x+ye^y)dy,其中L为直线y=0,x+2y=2及圆弧x^2+y^2=1所围成区域D