解析几何A1,A2是椭圆x^2/9+y^/4=1长轴两端点,P1,P2是垂直于A1A2的弦的两端点,求A1P1与A2P2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 18:19:15
解析几何A1,A2是椭圆x^2/9+y^/4=1长轴两端点,P1,P2是垂直于A1A2的弦的两端点,求A1P1与A2P2交点的轨迹
在线等,谢谢
在线等,谢谢
先写结果
(X/3)^2-(Y/2)^2=1
设p1(x,y),则p2(x,-y)
P1,p2在椭圆x^2/9+y^2/4=1上,则x=3sinθ,y=2cosθ
则A1P1的方程为(-3-x)/(0-y)=( 3sinθ+3)/2cosθ 1)
A2P2的方程为(3-x)/(0-y)=( -3sinθ+3)/2cosθ 2)
Q(x,y)为A1P1,A2P2的交点.联立方程1),2)得x=cscθ,y=2ctgθ
消去θ可得(X/3)^2-(Y/2)^2=1
2.
讨论y>0的情况:设P1(x1,y1),P2(x1,-y1),y1>0,两只县交点为(x,y)
于是直线A1P1方程为:y=y1(x+3)/(x1+3) (1)
直线A2P2方程为:y=-y1(x-3)/(x1-3)
求交点有y1(x+3)/(x1+3)=-y1(x-3)/(x1-3)
化简得2y1(xx1-9)=0,P1P2为弦,于是y1≠0,于是x1=9/x (2)
又(x1^2)/9+(y1^2)/4=1,于是y1=2sqrt(9-x1^2)/3 (3)
将(2)式、(3)式代入(1)式,化简得y=2sqrt(x^2-9)/3
y
(X/3)^2-(Y/2)^2=1
设p1(x,y),则p2(x,-y)
P1,p2在椭圆x^2/9+y^2/4=1上,则x=3sinθ,y=2cosθ
则A1P1的方程为(-3-x)/(0-y)=( 3sinθ+3)/2cosθ 1)
A2P2的方程为(3-x)/(0-y)=( -3sinθ+3)/2cosθ 2)
Q(x,y)为A1P1,A2P2的交点.联立方程1),2)得x=cscθ,y=2ctgθ
消去θ可得(X/3)^2-(Y/2)^2=1
2.
讨论y>0的情况:设P1(x1,y1),P2(x1,-y1),y1>0,两只县交点为(x,y)
于是直线A1P1方程为:y=y1(x+3)/(x1+3) (1)
直线A2P2方程为:y=-y1(x-3)/(x1-3)
求交点有y1(x+3)/(x1+3)=-y1(x-3)/(x1-3)
化简得2y1(xx1-9)=0,P1P2为弦,于是y1≠0,于是x1=9/x (2)
又(x1^2)/9+(y1^2)/4=1,于是y1=2sqrt(9-x1^2)/3 (3)
将(2)式、(3)式代入(1)式,化简得y=2sqrt(x^2-9)/3
y
设A1、A2是双曲线x2/4-y2=1的实轴两个端点,P1、P2是垂直于A1A2的弦的两个端点,则直线A1P1与A2P2
如图,A1A2为圆x^2+y^2=1与x轴的两个交点,P1P2为垂直于x轴的动弦,且直线A1P1与直线A2P2交于点M.
A1,A2为圆x^2+y^2=1与x轴的两个交点,P1P2为垂直于x轴的弦,且A1P1与A2P2的交点为M.求M的轨迹方
问个线性代数的问题(-1)^t a1p1 a2p2 anpn这个t是谁的逆序数?是 a1 a2 an的 还是 p1 p2
设A1A2是一个圆的一条直径的两个端点,P1P2是与A1A2垂直的弦,求直线A1P1与A2P2的交点的轨迹方程
如图,A1、A2为圆x2+y2=1与x轴的两个交点,P1P2为垂直于x轴的弦,且A1P1与A2P2的交点为M.
设 A1、A2 是双曲线x^2/4-y^2=1的实轴两个端点,垂直于x轴的弦p1.p2交双曲线于p1.P2两点,则直线A
已知椭圆x2/A2+Y2/B2=1,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点成等边三角,求椭圆方程;过点q(-1,
已知椭圆x^2/a^2+y^2/b^2=1的两焦点为F1,F2,长轴两端点为A1,A2
过点M(1,1)的直线与椭圆x^2/16+y^2/4=1交于P1,P2两点,求弦P1,P2的中点的轨迹方程
过点M的 (-2,0)直线L与椭圆x^2/2+y^2=1交于P1,P2线段P1,P2中点为P
一道数学椭圆题椭圆x^2/a^2+y^2/b^2=1的两焦点为F1、F2,长轴两端点为A1、A2若椭圆上存在一点Q,使角