作业帮 > 数学 > 作业

已知Y=√X^2+2x+2+√x^2-4x+8的最小值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 07:21:15
已知Y=√X^2+2x+2+√x^2-4x+8的最小值
已知Y=√X^2+2x+2+√x^2-4x+8的最小值
y=√(x²+2x+2)+√(x²-4x+8)
=√[(x+1)²+(0-1)²]+√[(x-2)²+(0+2)²]
即求点(x,0)到点(-1,1)及点(2,-2)距离之和的最小值.
过点(-1,1)、(2,-2)直线方程为y=-x,点(-1,1)、(2,-2)间距离即为点(x,0)到该两点距离之和的最小值.
令y=0,解得x=0,此时
距离最小值=√[(0+1)²+(0-1)²]+√[(0-2)²+(0+2)²]=3√2
y的最小值为3√2
提示:运用数形结合的方法很容易解出本题.