设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:44:08
设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:
W={α | (a,ai)=0,α∈ V ,i=1,2,...m}
证明:W是V的一个子空间
证明:W的正交补 =L(a1,12,...an)
W={α | (a,ai)=0,α∈ V ,i=1,2,...m}
证明:W是V的一个子空间
证明:W的正交补 =L(a1,12,...an)
证明:(1) 对任意a,b∈W, k∈F (a,ai)=0, (b,ai)=0, i=1,2,...,m 所以 (a+b,ai)=(a,ai)+(b,ai)=0 (ka,ai)=k(a,ai)=0, i=1,2,...,m 所以 a+b,ka∈W 所以 W是V的一个子空间. (2) 由a1,a2,...,am是V中的正交向量组 故 a1,a2,...,am 线性无关, 可扩充为V的一组基 a1,a2,...,am,am+1,...,an 将 am+1,...,an 正交化得与其等价的正交向量组 bm+1,...,bn 所以 a1,a2,...,am,bm+1,...,bn 是V的一组正交基 易见 W=L(bm+1,...,bn), W与L(a1,a2,...,am)正交, dimW+dim(L(a1,a2,...,am))=n 所以 W的正交补 =L(a1,a2,...,am).
注: W=L(bm+1,...,bn)
因为 a1,a2,...,am,bm+1,...,bn 是V的一组正交基所以 bi 与 aj 正交, 所以 bi∈W所以 L(bm+1,...,bn)包含在W中.反之, 对W中任一向量a, 有(a,ai)=0, i=1,2,...,m且 a 可表示为 a = k1a1+k2a2+...kmam+km+1bm+1+...+knbn则 k1a1+k2a2+...kmam = a -km+1bm+1-...-knbn两边对ai作内积得 ki(ai,ai)=0, 故ki=0, i=1,2,...,m所以 a = km+1bm+1+...+knbn ∈L(bm+1,...,bn)综上, W=L(bm+1,...,bn).
注: W=L(bm+1,...,bn)
因为 a1,a2,...,am,bm+1,...,bn 是V的一组正交基所以 bi 与 aj 正交, 所以 bi∈W所以 L(bm+1,...,bn)包含在W中.反之, 对W中任一向量a, 有(a,ai)=0, i=1,2,...,m且 a 可表示为 a = k1a1+k2a2+...kmam+km+1bm+1+...+knbn则 k1a1+k2a2+...kmam = a -km+1bm+1-...-knbn两边对ai作内积得 ki(ai,ai)=0, 故ki=0, i=1,2,...,m所以 a = km+1bm+1+...+knbn ∈L(bm+1,...,bn)综上, W=L(bm+1,...,bn).
设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)
设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,在V中找出一组标准正交基,使T在这组
设σ是欧式空间V的一个线性变换,证明:σ是正交变换的充要条件是对V的任意向量=.
设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量
设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.
设W是n维向量空间V中的一个子空间,且0
设a是n维欧式空间v的线性变换,证明,a是正交变换的充分必要条件是a在v任意一组标准正交基下的矩阵是正交矩阵
设a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为.
正交变换证明设V是n维欧式空间 a b属于V 且\a\=\b\ 证明 V有正交变换T使 T(a)=b
高等代数考研题设V是4维欧式空间,A是V的一个正交变换.若A没有实特征值,求证:A可分解为两个正交的二维A不变子空间的直
正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.