设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x∈R),
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 06:57:31
设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x∈R),
(1)试证明,对于任意的实数a,函数f(x)在R上为增函数;
(2)试确定a的值,使函数f(x)为奇函数.
(1)试证明,对于任意的实数a,函数f(x)在R上为增函数;
(2)试确定a的值,使函数f(x)为奇函数.
(1)试证明,对于任意的实数a,函数f(x)在R上为增函数;
用定义证明:设x1<x2,作差f(x1)-f(x2),
化简、通分得2(2^x1-2^x2)/[(2^x1+1)(2^x2+1)]
因为y=2^x是增函数
所以2^x1<2^x2
∴f(x1)<f(x2)
∴对于任意的实数a,函数f(x)在R上为增函数
(2)试确定a的值,使函数f(x)为奇函数.
f(0)=f(﹣0)=﹣f(0)
∴2f(0)=0
∴f(0)=0
即a﹣2/(2^0+1)=0
∴a=1
用定义证明:设x1<x2,作差f(x1)-f(x2),
化简、通分得2(2^x1-2^x2)/[(2^x1+1)(2^x2+1)]
因为y=2^x是增函数
所以2^x1<2^x2
∴f(x1)<f(x2)
∴对于任意的实数a,函数f(x)在R上为增函数
(2)试确定a的值,使函数f(x)为奇函数.
f(0)=f(﹣0)=﹣f(0)
∴2f(0)=0
∴f(0)=0
即a﹣2/(2^0+1)=0
∴a=1
设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x属于R)证明对于任意A,f(x)为增函数
设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x属于R),试确定a的值,使f(x)为奇函数
设a是实数,f(x)=a-2/(2的x次方+1)(x)∈R 试证明对任意实数a,f(x)为增函数 试确定a的值使f(x)
设a为实数,函数f(x)=x^2+(x-a)的绝对值+1,x属于R
设a是实数,f(x)=a-2/(2^x+1) (x∈R)证明对于任意a,f(x)为增函数
设a是实数,f(x)=a-(2/2^X+1) (x属于R) (1)证明:不论a为何实数,F(x)均为增函数
设a为实数,函数f(x)=x^2+|x-a|+1,x∈R
设函数f(x)=x2+︱2x-a︱ (x属于R,a为实数),设a大于2,求函数f(x)的最小值.
设a是实数,f(x)=a-2/2^x +1(x属于R)试证明对于任意a,f(x)为增函数
设函数f(x)=2x(e的x次方减 ae的负x次方)(x属于R)是偶函数,则实数a=?
设a为实数,函数f(x)=x2+|x-a|+1,x∈R求f(x)最小值
设a是实数,f(x)=a-2/〔2(x次方)+1〕(x∈R)试证明:对于任意af(x)为增函数.