设参数方程x=t(1-sint);y=tcost , a为常数, 求二阶导数 d^2y/(dx^2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:12:26
设参数方程x=t(1-sint);y=tcost , a为常数, 求二阶导数 d^2y/(dx^2)
dy/dx=(dy/dt)/(dx/dt)=(cost-tsint)/(1-sint-tcost)
d^2y/dx^2=(dy/dx)/(dx/dt)
=[(-sint-sint-tcost)(1-sint-tcost)-(cost-tsint)(-cost-cost+tsint)/(1-sint-tcost)^3
=[(2sint+tcost)(sint+tcost-1)+(cost-tsint)(2cost-tsint)]/(1-sint-tcost)^3
后面的展开计算化简了.
d^2y/dx^2=(dy/dx)/(dx/dt)
=[(-sint-sint-tcost)(1-sint-tcost)-(cost-tsint)(-cost-cost+tsint)/(1-sint-tcost)^3
=[(2sint+tcost)(sint+tcost-1)+(cost-tsint)(2cost-tsint)]/(1-sint-tcost)^3
后面的展开计算化简了.
设x=1+t^2、y=cost 求 dy/dx 和d^2y/dx^2 sint-tcost/4t^3 和 sint-tc
L为参数方程x=cost+tsint y=sint-tcost 求曲线积分x+e^xdy+(y+ye^x)dx t为0到
求微分的题目一道,x=e^(-t)sint,y=e^tcost,求 d^2y/dx^2
参数方程 导数问题x=a(t-sint) y=b(1-cost) d求 dy/dx 主要是 dy/dt 和dx/dt怎么
参数方程:x=5(t-sint) y=5(1-cost) 求d^2y/dx^2 dy/dx我会求
验证参数方程{x=e^t*sint y=e^t*cost 所确定的函数满足关系式(d^2y/dx^2)*(x+y)^2=
设x=cost y=sint-tcost 求dy/dx
求参数方程x=a(t-sint) y=a(1-cost)的导数dy/dx的二阶导怎么做?
x=a(cost+tsint) y=a(sint—tcost) 求导dy/dx
参数方程求导 x=a(t-sint) y=a(1-cost) 求dy/dx 各种不会 求解决
高数 已知参数方程{x=ln根号下1+t的平方,y=arctant},求二阶导数d^2y\dx^2
设参数方程x=t-In(1+t^2) y=arctant 确定函数y=y(x),求d^2y/dx^2