已知数列{an}满足a1=a2=2,a(n+1)=an+2a(n-1)(n>=2).求数列{an}的通项公式
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 02:50:38
已知数列{an}满足a1=a2=2,a(n+1)=an+2a(n-1)(n>=2).求数列{an}的通项公式
∵数列{a[n]}满足a[n+1]=a[n]+2a[n-1](n>=2)
∴a[n+1]-2a[n]=-(a[n]-2a[n-1])
∵a[1]=a[2]=2
∴{a[n+1]-2a[n]}是首项为a[2]-2a[1]=-2,公比为-1的等比数列
即:a[n+1]-2a[n]=(-2)(-1)^(n-1)=2(-1)^n
∴a[n+1]+(2/3)(-1)^(n+1)=2(a[n]+(2/3)(-1)^n)
∴{a[n]+(2/3)(-1)^n}是首项为a[1]+(2/3)(-1)^1=4/3,公比为2的等比数列
即:a[n]+(2/3)(-1)^n=(4/3)2^(n-1)=2^(n+1)/3
∴a[n]=2^(n+1)/3-(2/3)(-1)^n
∴a[n+1]-2a[n]=-(a[n]-2a[n-1])
∵a[1]=a[2]=2
∴{a[n+1]-2a[n]}是首项为a[2]-2a[1]=-2,公比为-1的等比数列
即:a[n+1]-2a[n]=(-2)(-1)^(n-1)=2(-1)^n
∴a[n+1]+(2/3)(-1)^(n+1)=2(a[n]+(2/3)(-1)^n)
∴{a[n]+(2/3)(-1)^n}是首项为a[1]+(2/3)(-1)^1=4/3,公比为2的等比数列
即:a[n]+(2/3)(-1)^n=(4/3)2^(n-1)=2^(n+1)/3
∴a[n]=2^(n+1)/3-(2/3)(-1)^n
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
已知数列{an}满足a1=1,a2=2,a(n+2)=(an+a(n+1))/2,n属于正整数.求{an}的通项公式.
已知数列{An}满足A1=1,A2=3,A(n+2)=3A(n+1)-2An,求an的通项公式
已知数列满足a(n+1)=1/(2-an),a1=a,(1)求a1,a2,a3,a4;(2)猜想数列{an}的通项公式,
已知数列{an}满足a1=1,an=4a(n-1)/[2a(n-1)+1] (n>=2)求数列{an}的通项公式
已知数列{an}满足关系式lg(1+a1+a2+.+an)=n,求数列{an}的通项公式
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
已知数列an满足a1+2a2+2^2a3+...+2^n-1an=n/2,.求数列an的通项公式.
设数列{an}满足a1+3 a2+3^2 a3+……+3^n-1 an=n/3,a属于N* 求数列{an}的通项
已知数列{An}满足A1=2,A(n+1)=2An/(2+An).(1)求此数列的前三项,(2)求{An}的通项公式
已知数列{an}满足:a1=1,且an-a(n-1)=2n.求a2,a3,a4.求数列{an}通项an