已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 11:08:53
已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3
方法①
根据平均值不等式:
x^2/(y+2z)+(y+2z)/9≥2√{[x^2/(y+2z)][(y+2z)/9]}=2x/3
y^2/(z+2x)+(z+2x)/9≥2√{[y^2/(z+2x)][(z+2x)/9]}=2y/3
z^2/(x+2y)+(x+2y)/9≥2√{[z^2/(x+2y)][(x+2y)/9]}=2z/3
以上3式相加:
x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)+3(x+y+z)/9≥2(x+y+z)/3
∵x+y+z=1
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
方法②
利用柯西不等式:
[x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)][(y+2z)+(z+2x)+(x+2y)]
≥(x+y+z)^2=1
而显然:(y+2z)+(z+2x)+(x+2y)=3(x+y+z)=3
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
【以上两方法证明中等号成立的条件都是x=y=z=1/3】
根据平均值不等式:
x^2/(y+2z)+(y+2z)/9≥2√{[x^2/(y+2z)][(y+2z)/9]}=2x/3
y^2/(z+2x)+(z+2x)/9≥2√{[y^2/(z+2x)][(z+2x)/9]}=2y/3
z^2/(x+2y)+(x+2y)/9≥2√{[z^2/(x+2y)][(x+2y)/9]}=2z/3
以上3式相加:
x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)+3(x+y+z)/9≥2(x+y+z)/3
∵x+y+z=1
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
方法②
利用柯西不等式:
[x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)][(y+2z)+(z+2x)+(x+2y)]
≥(x+y+z)^2=1
而显然:(y+2z)+(z+2x)+(x+2y)=3(x+y+z)=3
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
【以上两方法证明中等号成立的条件都是x=y=z=1/3】
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
已知正数x.y.z满足x+y+z=1,求证:(1):(1/x-1)(1/y-1)(1/z-1)大于等于8;(2):1/x
已知正数x,y,z满足x+2y+3z=1,则1x+2y
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1
一道高中不等式证明题已知正数x,y,z满足x+y+z=1求证:x^2/(y+2z)+y^2/(z+2x)+z^2/(x+
已知x,y,z 大于0,x+y+z=2,求证 xz/y(y+z)+zy/x(x+y)+yx/z(z+x)大于等于2/3
1.已知x,y,z满足2│x-y│+(根号2y-z)+z平方-z+(1/4)=0,求x,y,z值.
不等式证明 急 已知x,y,z 是正数.若 x/(x+2) +y/(y+2) +z/(z+2) =1求证 x^2/(x+
已知x、y、z满足方程组:x+y-z=6;y+z-x=2;z+x-y=0 求x、y、z的值
已知x,y,z都是正数,且3^x=4^y=6^z 求证 1/z-1/x=1/2y
(y-x)/(x+z-2y)(x+y-2z)+(z-y)(x-y)/(x+y-2z)(y+z-2x)+(x-z)(y-z
试证明(x+y-2z)+(y+z-2x)+(z+x-2y)=3(x+y-2z)(y+z-2x)(z+x-2y)