作业帮 > 数学 > 作业

已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 11:08:53
已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3
已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3
方法①
根据平均值不等式:
x^2/(y+2z)+(y+2z)/9≥2√{[x^2/(y+2z)][(y+2z)/9]}=2x/3
y^2/(z+2x)+(z+2x)/9≥2√{[y^2/(z+2x)][(z+2x)/9]}=2y/3
z^2/(x+2y)+(x+2y)/9≥2√{[z^2/(x+2y)][(x+2y)/9]}=2z/3
以上3式相加:
x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)+3(x+y+z)/9≥2(x+y+z)/3
∵x+y+z=1
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
方法②
利用柯西不等式:
[x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)][(y+2z)+(z+2x)+(x+2y)]
≥(x+y+z)^2=1
而显然:(y+2z)+(z+2x)+(x+2y)=3(x+y+z)=3
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
【以上两方法证明中等号成立的条件都是x=y=z=1/3】