设X Y Z属于R,求证x²+y²+z²≥xy+yz+zx
已知x+y+z=2,xy+yz+zx=-5,求x²+y²+z²的值
已知x+y+z=1,x²+y²+z²=2求xy+yz+zx
(1/x+1/y+1/z)×(xy)/(xy+yz+zx)
已知2x-y-5z=0,x-2y+2z=0,求x²+y²+z²/xy+yz+zx的值.
设x,y,z≥0,x+y+z=3,证明:√x+√y+√z≥xy+yz+zx
证明 (x+y+z)^2>3(xy+yz+zx)
分解因式:xyz-yz-zx-xy+x+y+z-1
xy+yz+zx=1,x,y,z>=0
xy+yz+zx=1,求x√yz+y√zx+z√xy
1.已知4(xy-zx-y²+yz)=-z²+2zx-x²,求z-zy+x-3的值
已知X,Y,Z都是整数且xy+yz+zx=1,求证x+y+z>=根号3
正实数x,y,z满足9xyz+xy+yz+zx=4,求证: