设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 18:37:10
设函数f(x)的定义域关于原点对称,且满足 (1) f(x1-x2)=[f(x1)*f(x2)+1]/[f(x2)-f(x1)];(2)存在正常数a,
使 f(a)=1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.
使 f(a)=1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a.
(1)
f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
设x=x1-x2
f(-x)=f(x2-x1)=[f(x2)f(x1)+1]/[f(x1)-f(x2)]
=-[f(x1)f(x2)+1]/[f(x2)-f(x1)]=-f(x1-x2)=-f(x)
∴f(x)是奇函数
(2)
f(a)=1,f(-a)=-1
f(x-a)=[f(x)+1]/[1-f(x)]
f(x+a)=[-f(x)+1]/[-1-f(x)]=[f(x)-1]/[1+f(x)]=-1/f(x-a)
f(x+2a)=f(x+a+a)=-1/f(x+a-a)=-1/f(x)
f(x-a)=-1/f(x+a)
f(x-2a)=f(x-a-a)=-1/f(x-a+a)=-1/f(x)
∴f(x+2a)=f(x-2a)
∴f(x)是周期函数,4a是一个周期
f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
设x=x1-x2
f(-x)=f(x2-x1)=[f(x2)f(x1)+1]/[f(x1)-f(x2)]
=-[f(x1)f(x2)+1]/[f(x2)-f(x1)]=-f(x1-x2)=-f(x)
∴f(x)是奇函数
(2)
f(a)=1,f(-a)=-1
f(x-a)=[f(x)+1]/[1-f(x)]
f(x+a)=[-f(x)+1]/[-1-f(x)]=[f(x)-1]/[1+f(x)]=-1/f(x-a)
f(x+2a)=f(x+a+a)=-1/f(x+a-a)=-1/f(x)
f(x-a)=-1/f(x+a)
f(x-2a)=f(x-a-a)=-1/f(x-a+a)=-1/f(x)
∴f(x+2a)=f(x-2a)
∴f(x)是周期函数,4a是一个周期
设函数f(x)的定义域关于原点对称,且满足①f(x1-x2)=[f(x1)f(x2)+1]/[f(
设函数f(x)的定义域关于原点对称,且对于定义域内任意x1≠x2有f(x1-x2)=[1+f(x1)+f(x2)]/[f
定义域关于原点对称的函数f(x)满足f(x1-x2)=[f(x1)-f(x2)]/[1+f(x1)f(x2)],判断f(
设函数f(x)的定义域关于原点对称,且对于定义域内的任意的x1≠x2,都有f(x1-x2)=[1+f(x1)*f(x2)
设函数f(x)的定义域为R*,且满足条件f(4)=1,对于任意x1,x2∈R*,有f(x1*x2)=f(x1)+f(x2
设函数F(X)的定义域为R,对任意实数X1,X2,有F(X1)+F(X2)=2F(X1+X2/2)乘以F(X1-X2)/
设函数f(x)的定义域为R,对任意实数x1,x2,有f(x1)+f(x2)=2f{(x1+x2)/2}×f{(x1-x2
要详解设函数f(x)的定义域为R,且满足下列两个条件:(1).存在x1不等于x2,使f(x1)不等于f(x2)(2).对
设函数f(x) 的定义域为正实数,且满足条件f(4)=1,对于任意x1,x2∈正实数,有f(x1·x2)=f(x1)+f
函数f(x)=x的平方- x +c的定义域为[0,1],设x1,x2属于[0,1]且x1不等于x2,证明:|f(x2)-
已知定义在区间(0,+∞)上的函数f(x)满足f(x1/x2)=f(x1)-f(x2),且当x>1时f(x)
定义在区间(0,正无穷大)上的函数f(x)满足 f(x1/x2)=f(x1)-f(x2) ,且当 x>1 时,f(x)