已知函数f(x)=2x+2/x+alnx,a∈R
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 15:45:05
已知函数f(x)=2x+2/x+alnx,a∈R
(1)若函数f(x)在[1,正无穷)上2单调递增,求实数a的取值范围
(2)记函数g(x)=x²[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的最小值
(1)若函数f(x)在[1,正无穷)上2单调递增,求实数a的取值范围
(2)记函数g(x)=x²[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的最小值
f(x)的定义域为x>0
f'(x)=2-2/x²+a/x=(2x²+ax-2)/x²
由题意得:f'(x)≧0对x∈[1,正无穷)恒成立
即2x²+ax-2≧0对x∈[1,正无穷)恒成立
分离变量:ax≧-2x²+2 x>0可同除x
a≧-2x+2/x
令g(x)=-2x+2/x x∈[1,正无穷)
易得g(x)在[1,正无穷)上单调递减
所以,g(x)max=g(1)=-2+2=0
所以:a≧0
即实数a的取值范围是:a≧0
f'(x)=2-2/x²+a/x=(2x²+ax-2)/x²
由题意得:f'(x)≧0对x∈[1,正无穷)恒成立
即2x²+ax-2≧0对x∈[1,正无穷)恒成立
分离变量:ax≧-2x²+2 x>0可同除x
a≧-2x+2/x
令g(x)=-2x+2/x x∈[1,正无穷)
易得g(x)在[1,正无穷)上单调递减
所以,g(x)max=g(1)=-2+2=0
所以:a≧0
即实数a的取值范围是:a≧0
已知函数f(x)=x^2+2/x+alnx,a∈R
已知函数f(x)=x^2-(a+2)x+alnx(a∈R),求函数f(x)单调区间
已知函数f(x)=alnx+2/(x+1) (a∈R)
已知函数f(x)=2/x+aLnx,a∈R
已知函数f(x)=x-1/x,g(x)=alnx(a∈R)
已知函数f(x)=x²+2x+alnx.(a∈R) 求函数f(x)的导数f'(x)的零点个数.
已知函数f(x)=2x+alnx,a∈R.
已知函数f(x)=根号x,g(x)=alnx,a∈R
已知函数x^2-alnx(a属于R).当x=1时,f(x)取得极值.
已知函数f(x)=2/x+alnx,a属于R 求函数在区间(0,e]上的最小值.
已知函数f(x)=1/2x^2+alnx(a∈R,a≠0),求f(x)的单调区间
f(x)=1/2x^-alnx(a∈R) 求函数f(x)的单调区间