若函数f(x)在(0,+∞)上恒有xf′(x)>f(x)成立(其中f′(x)为f(x)的导函数),则称这类函数为A类函数
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/17 07:26:17
若函数f(x)在(0,+∞)上恒有xf′(x)>f(x)成立(其中f′(x)为f(x)的导函数),则称这类函数为A类函数.
(1)若函数g(x)=x2-1,试判断g(x)是否为A类函数;
(2)若函数h(x)=ax-3-lnx-
(1)若函数g(x)=x2-1,试判断g(x)是否为A类函数;
(2)若函数h(x)=ax-3-lnx-
1−a |
x |
(1)∵g'(x)=2x,
∴xg'(x)-g(x)=2x2-(x2-1)=x2+1>0在(0,+∞)上恒成立,即xg'(x)>g(x)在(0,+∞)上恒成立,
∴g(x)=x2-1是A型函数.
(2)h′(x)=a-
1
x+
1−a
x2(x>0),
由xh'(x)>h(x),
得ax-1+
1−a
x>ax-3-lnx-
1−a
x,
∵x>0,∴可化为2(a-1)<2x+xlnx,
令p(x)=2x+xlnx,p'(x)=3+lnx,
令p'(x)=0,得x=e-3,
当x∈(0,e-3)时,p'(x)<0,p(x)是减函数;
当x∈(e-3,+∞)时,p'(x)>0,p(x)是增函数,
∴p(x)min=p(e-3)=-e-3,
∴2(a-1)<-e-3,a<1-
1
2e-3.
(3)证明:函数f(x)是(0,+∞)上的每一点处都有导数,且xf'(x)>f(x)在(0,+∞)上恒成立,
设F(x)=
f(x)
x,F′(x)=
xf′(x)−f(x)
x2>0在(0,+∞)时恒成立,
∴函数F(x)=
f(x)
x在(0,+∞)上是增函数,
∵x1>0,x2>0,∴x1+x2>x1>0,x1+x2>x2>0,
∴F(x1+x2)>F(x1),F(x1+x2)>F(x2),即
f(x1+x2)
x1+x2>
f(x1)
x1,
f(x1+x2)
x1+x2>
f(x2)
x2,
∴f(x1)<
x1f(x1+x2)
x1+x2,f(x2)<
x2f(x1+x2)
x1+x2,
两式相加,得f(x1)+f(x2)<f(x1+x2).
∴xg'(x)-g(x)=2x2-(x2-1)=x2+1>0在(0,+∞)上恒成立,即xg'(x)>g(x)在(0,+∞)上恒成立,
∴g(x)=x2-1是A型函数.
(2)h′(x)=a-
1
x+
1−a
x2(x>0),
由xh'(x)>h(x),
得ax-1+
1−a
x>ax-3-lnx-
1−a
x,
∵x>0,∴可化为2(a-1)<2x+xlnx,
令p(x)=2x+xlnx,p'(x)=3+lnx,
令p'(x)=0,得x=e-3,
当x∈(0,e-3)时,p'(x)<0,p(x)是减函数;
当x∈(e-3,+∞)时,p'(x)>0,p(x)是增函数,
∴p(x)min=p(e-3)=-e-3,
∴2(a-1)<-e-3,a<1-
1
2e-3.
(3)证明:函数f(x)是(0,+∞)上的每一点处都有导数,且xf'(x)>f(x)在(0,+∞)上恒成立,
设F(x)=
f(x)
x,F′(x)=
xf′(x)−f(x)
x2>0在(0,+∞)时恒成立,
∴函数F(x)=
f(x)
x在(0,+∞)上是增函数,
∵x1>0,x2>0,∴x1+x2>x1>0,x1+x2>x2>0,
∴F(x1+x2)>F(x1),F(x1+x2)>F(x2),即
f(x1+x2)
x1+x2>
f(x1)
x1,
f(x1+x2)
x1+x2>
f(x2)
x2,
∴f(x1)<
x1f(x1+x2)
x1+x2,f(x2)<
x2f(x1+x2)
x1+x2,
两式相加,得f(x1)+f(x2)<f(x1+x2).
设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是( )
设函数f(x)在R上可导,其导函数为f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图像可能是
设函数f(x)的导函数为f'(x),且满足f(x)=3x*2+2xf'(2),则f'(5)
定义域为(0,+∞)的可导函数f(x)满足xf′(x)>f(x)且f(2)=0,则f(x)x<0的解集为( )
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)满足:2f(x)+xf′(x)>xf(x),则f(x)在区间[
已知f(x)为定义在(0,+∞)上的可导函数,且xf'(x)-f(x)>0,则不等式x^2f(1/x)>f(x)的解集为
设函数f(x)的导数为f‘(x),且f(x)=x²+2xf‘(1),则f‘(0)等于
若函数y=f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称y=f(x)为“Ω函数
已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3•f
定义在R上的可导函数f(x)的导函数f′(x),且xf′(x)+f(x)>0,那么12f(1)与f(2)的大小关系是(
若函数y=f(x)在R上可导且满足不等式xf′(x)+f(x)>0恒成立,且常数a,b满足a>b,则下列不等式一定成立的
已知函数f(x)=sinx/(sinx+cosx),f'(x)为 f(x)的导函数,则f'