∫∫(x^2+y^2)dydZ,其中s为锥面Z=√x^2+y^2,平面z=1及y0Z面所围闭曲面在第一卦限和第四卦限外侧
∫s∫e/ √(X^2+Y^2)dxdy其中S为锥面z=√X^2+Y^2及平面z=1,z=2所围立体整个边界外侧(√为根
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=
计算∫∫∑(x^2+y^2)dS其中∑为锥面z=√(x^2+y^2)及平面z=1围成的整个边界曲面
计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2
∫∫(x+2y+z)dxdy+yzdydz 其中 Σ为平面x+2y+z=6与坐标面所围成区域的边界曲面的外侧
计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与
计算下列对坐标的曲面积分.∮Σ∮(x+2y+z) dxdy + yz dydz,其中Σ为平面x+2y+z=6与坐标面所围
∫∫(x-y)dydz+(y-z)dzdx+(z-x)dxdy,∑为锥面z=√(x^2+y^2)的下侧,z在0到2之间
∫∫e^z/√(x^2+y^2 ) dxdy,∑为锥面,z=√(x^2+y^2 )及平面z=1,z=2所围的立体表面的外
求曲面∫∫(x^2+y^2)ds的积分,∑是锥面z=✔(x^2+y^2)及平面z=1所围成的区域的整个边界
曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面