作业帮 > 数学 > 作业

已知数列﹛an﹜,定义其倒均数为vn=(1/a1+1/a2+.+1/an)/n,n∈N*.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 11:59:03
已知数列﹛an﹜,定义其倒均数为vn=(1/a1+1/a2+.+1/an)/n,n∈N*.
设等比数列﹛bn﹜的首项为-1,公比为q=1/2,其倒数均为Vn,若存在正整数k,使n≥k时,Vn<-16恒成立,试求k的最小值.
已知数列﹛an﹜,定义其倒均数为vn=(1/a1+1/a2+.+1/an)/n,n∈N*.
n=(-1)×(1/2)^(n-1)
1/bn=(-1)×2^(n-1)
[1/b(n+1)]/(1/bn)=(-1)×2^n/[(-1)×2^(n-1)]=2,为定值.
又1/b1=1/(-1)=-1
数列{1/bn}是以-1为首项,2为公比的等比数列.
vn=1/b1+1/b2+...+1/bn=(-1)×(2ⁿ -1)/(2-1)=1-2ⁿ
令1-2^k17
k为正整数,k≥5
k的最小值是5.