设f(x)在(-∞,+∞)内二次可微,且f(0)0,证明f(x)/x在区间(-∞,0)和(0,+∞)内都是单调增加的.
设f(x)在区间(-∞,+∞)内单调增加,limf(x)=1(x→0),证明f(x)在x=0处连续
设f'(x)在(0,+∞)上单调递增,且f(x)=0,证明F(x)=f(x)/x在(0,+∞)上单调增加
证明函数f(x)=-x²+1在区间(-∞,0)内单调增加.
已知函数f(X)=X+x分之4(X>0),证明f(x)在[2,+∞)内单调递增
证明f(x)=ln[x+(1+x^2)^1/2]在区间(-∞,+∞)内是单调增加函数
设函数f(x)在[0,1]连续且单调增加,证明F(X)=(1/X)∫[0,x]f(t)dt在(0,1)内也单调增加
设函数f(x)在(-∞,+∞)内可导,f(x)的导数等于f(x),且f(0)=1,证明在(-∞,+∞)内f(x)=e∨x
设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x
设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a^2+a+1)
设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1
◆高数 证明题 “设f''(x) > 0,x∈R,且f(0) = 0,证明:函数f(x) / x在区间(0,+inf)内
设函数f(x)在区间[0,+∞]上连续,且f(0)=0,f'(x)递增 ,证明:f(x)/x在(0,+∞)上是单调增函数