设A,B为Rn中的正交矩阵,证明A^(-1)(即A的逆矩阵) ,A^2,A^*(即A的转置伴随矩阵)都是正交矩阵
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 18:49:51
设A,B为Rn中的正交矩阵,证明A^(-1)(即A的逆矩阵) ,A^2,A^*(即A的转置伴随矩阵)都是正交矩阵
证明:注意到 A正交 A'A = AA' = E A^-1 = A'
(0) (AB)'(AB) = B'(A'A)B = B'B = E
所以 AB 也是正交矩阵
(1) 因为 (A^-1)'(A^-1) = (A')'A' = AA' = E
所以 A^-1 是正交矩阵.
(2) 取B=A,A^2 =AB 是正交矩阵
(3) 由 A* = |A|A^-1
而 |A|^2=|A||A'|=|A'A|=|E|=1
所以 |A| = ±1
所以 A*=±A^-1
所以 (A*)'A* = (±A^-1)'(±A^-1) = (A^-1)'(A^-1)=E (这步因为A^-1正交)
所以 A*是正交矩阵..
再问: A' 是什么东西?
再答: A的转置 A^T 这也是个常用记号
再问: 看了以会,不是太理解,先抄了,3Q。
(0) (AB)'(AB) = B'(A'A)B = B'B = E
所以 AB 也是正交矩阵
(1) 因为 (A^-1)'(A^-1) = (A')'A' = AA' = E
所以 A^-1 是正交矩阵.
(2) 取B=A,A^2 =AB 是正交矩阵
(3) 由 A* = |A|A^-1
而 |A|^2=|A||A'|=|A'A|=|E|=1
所以 |A| = ±1
所以 A*=±A^-1
所以 (A*)'A* = (±A^-1)'(±A^-1) = (A^-1)'(A^-1)=E (这步因为A^-1正交)
所以 A*是正交矩阵..
再问: A' 是什么东西?
再答: A的转置 A^T 这也是个常用记号
再问: 看了以会,不是太理解,先抄了,3Q。
设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵
设a,b属于Rn,A为正交矩阵,证明:1:|Aa|=|a|; 2:=.
矩阵证明题1、证明:若A与B都是n阶正交矩阵,则AB也是正交矩阵.2、证明:对任意的n阶矩阵A,A+A^T为对称矩阵,A
设A是正交矩阵,证明A^*也是正交矩阵
A是n阶正交矩阵 证明A的伴随也是正交矩阵
已知A是n阶正交矩阵,A*是A的伴随矩阵,证明A*是正交矩阵.
A为正交阵A的伴随矩阵也为正交阵的证明
设n阶非零实数矩阵A满足A的伴随矩阵等于A的转置,试证A的行列式等于一,且A为正交矩阵
正交矩阵的性质A是n阶正交矩阵,证明A*也是正交矩阵结果如下:由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵
设A是n级正交矩阵,P,Q是n级可逆实矩阵,则A.PAQ是正交矩阵;B.P的转置AP是正交矩阵;C.2A是正交矩阵
设A为正交矩阵,证明A^2也是正交矩阵
设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基