如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于F,AD交CE于H,求证:FH∥BD
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 03:21:54
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于F,AD交CE于H,求证:FH∥BD.
证明:(1)∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,
∴在△BCE和△ACD中,
BC=AC
∠BCE=∠ACD
CE=CD ,
∴△BCE≌△ACD (SAS).
∴∠CBF=∠CAH,
又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,
∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF,
在△BCF和△ACH中,
∠CBE=∠CAH
BC=AC
∠BCF=∠ACH ,
∴△BCF≌△ACH (ASA),
∴CF=CH,
又∵∠FCH=60°,
∴△CHF为等边三角形
∴∠FHC=∠HCD=60°,
∴FH∥BD.
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,
∴在△BCE和△ACD中,
BC=AC
∠BCE=∠ACD
CE=CD ,
∴△BCE≌△ACD (SAS).
∴∠CBF=∠CAH,
又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,
∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF,
在△BCF和△ACH中,
∠CBE=∠CAH
BC=AC
∠BCF=∠ACH ,
∴△BCF≌△ACH (ASA),
∴CF=CH,
又∵∠FCH=60°,
∴△CHF为等边三角形
∴∠FHC=∠HCD=60°,
∴FH∥BD.
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC与F,AD交CE于H.
如图,已知B、C、D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于F,AD交CE于H.
如图,已知点B.C.D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于F,AD交CE于H,求证:AD=BE
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,求证:△BCE≌
如图,点B,C,D在同一条直线上,三角形ABC和三角形CDE都是等边三角形,BE交AC于F,AD交CE于H
如图已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC 于F,AD交CE于H,连接PC,
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,
如图,已知点B、C、D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于H.
1.如图,△ABC、△CDE都是等边三角形,且点B、C、D在同一条直线上.连接AD交CE于点F,连接BE交AC于点G,A
如图,已知点B,C,D在同一条直线上,三角形ABC和三角形CDE是等腰三角形,BE交AC于F,AD交CE于H,求证CF=
数学证明题如图,△ABC,△CDE都是等边三角形,且点B,C,D在同一条直线上,连接AD,交CE于点F,连接BE,交AC
如图,△ABC和△CDE都是等边三边形,B,C,D在一条直线上,连结BE与AD分别与AC,CE交于点F,G,试说明下列结