作业帮 > 数学 > 作业

若函数f(x)=-4sin∧2x+4cosx+1-a,当x∈【-π/3,2π/3】时f(x)=0恒有解,求实数a的取值范

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:38:54
若函数f(x)=-4sin∧2x+4cosx+1-a,当x∈【-π/3,2π/3】时f(x)=0恒有解,求实数a的取值范围
(2)如果f(x)小于0,则实数a的取值范围是
若函数f(x)=-4sin∧2x+4cosx+1-a,当x∈【-π/3,2π/3】时f(x)=0恒有解,求实数a的取值范
/>1.
f(x)=-4sin²x+4cosx+1-a=-4(1-cos²x)+4cosx+1-a
=4cos²x+4cosx+1-(a+4)
=(2cosx+1)²-(a+4)
f(x)=0
(2cosx+1)²=a+4
x∈[-π/3,2π/3]
1/2≤cosx≤1 2≤2cosx+1≤3
4≤(2cosx+1)²≤9
4≤a+4≤9
0≤a≤5

2.
f(x)5
再问: 那可不可以告诉我第二问呢 谢谢了
再答: 已经写了。