函数在区间上可积且在任意连续点取值为0,那么定积分值为0?
根据定积分的几何意义证明下列等式 设f(x)是周期为t的函数,且在任意区间强可积,则 定积分a到a+t f(x)dx=定
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少
设f(x)在区间[0.1]上连续,函数F(x)是上限为x下限为0,tf(cost)的定积分,判断F(x)在[-π/2,π
f(x)为连续奇函数,则定积分∫f(x)dx 在积分区间【-2,2】里为多少?
函数f(x)zai [0,1]上连续,证明在区间0到π内,定积分xf(sinx)=定积分π/2f(sinx)
如果f(x)为周期函数,且在周期(0,T)上定积分为0,则f(x)的任意原函数也是以T为周期的函数,怎么证明?
高等数学证明题设函数f(x)在区间[a,b]上连续,A,B为两个常数,且AB>0,证明对任意x1,x2{x1,x2在区间
定积分换元法的条件设函数f(x)在区间[a,b]上连续;函数g(t)在区间[m,n]上是单值的且有连续导数;当t在区间[
定积分的分部积分法要求函数在区间(a,b)上有连续导数,其连续导数是?
定义函数y={f(x),x>0 且函数y在区间[3,7]上是增函数,最小值为5那么函数y在区间 {-f(x),x
y=f(x)在[0,1]上具有连续的导函数,且f(0)=f(1)=0,f(x)的平方的定积分为1,求x*f(x)*f'(
奇偶函数的定积分f(x)为偶函数且在(-a,a)上连续 证明∫(-a,a)f(x)dx=2∫(0,a)f(x)dx