若函数Y=sinx+acosx在区间[0,派/6]上是单调函数,且最大值为根号下(1+a的平方),则实数a=
是否存在实数a,使得函数y=sin^2x+acosx+(5/8)a-(3/2)在闭区间[0,二分之派]上的最大值是1?
是否存在实数a,使得函数y=sin^2x+acosx+5a/8-3/2在闭区间[0,π/2]上的最大值为1
是否存在实数a,使得函数y=sin²x+acosx+5a/8-3/2在闭区间[0,π/2]上的最大值是1,
是否存在实数a,使得函数y=sin^2x+acosx-1+5/8a在闭区间[0,π/2]上最大值为1?
是否存在实数a,使得函数y=sin^2x+acosx+(5/8)a-3/2在闭区间[0,π/2]上的最大值是1?若存在,
是否存在实数a,使得函数y=sin^2x+acosx+(5/8)a-(3/2)在闭区间[0,π/2]上的最大值是1?若存
是否存在实数a使得函数y=sin^x+acosx+5/8a-3/2在闭区间【0,π/2】上的最大值是1?若存在,求出对应
是否存在实数a,使得函数y=sin^2x +acosx+(5/8)a-3/2在闭区间[0,π/2]上的最大值是1?若存在
是否存在实数a,使得函数y=sin²x+acosx+5/8a-3/2在闭区间【0,π/2】上的最大值是1?若存
函数y=sinx+根号3cosx在区间(-6分之派,2分之派)上的值域是
求函数y=(sinx)^2+acosx+a的最大值
函数y=ax的平方+(2a-1)x-3(a不等于0)在区间【-3/2,2】上的最大值是3,则实数a=