(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 20:06:11
(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
(1)如图3,
∵△DOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴OD=OC=OB=OA,∠1=∠2=60°,
∴∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴∠4=30°.
同理∠6=30°.
∵∠AEB=∠4+∠6,
∴∠AEB=60°.
(2)如图4
∵△DOC和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
∵△DOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴OD=OC=OB=OA,∠1=∠2=60°,
∴∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴∠4=30°.
同理∠6=30°.
∵∠AEB=∠4+∠6,
∴∠AEB=60°.
(2)如图4
∵△DOC和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
如图1,点O是线段AD的重点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,
如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,
如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD
如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD1
如图,点O是线段AD上的点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,
会的快来如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧做等边三角形OAB和OCD,连结AC和BD,相交
两个全等三角形 求角如图12-1,点O是线段AD上的一点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三
连接AC与BD,相交于点E,连接BC.求∠AEB的大小.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段A
已知AB=2,P是线段AB上的动点,分别以AP,PB为边在线段AB的同侧作等边三角形AEP和等边三角形PFB,连接EF,
已知:如图,点B在线段AC上,以AB、BC为边在AC同侧作等边三角形ABD和等边三角形BCE,连接AE、CD相交于O,A
如图,分别以三角形ABC的边,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O.(1)求证:B
如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.