作业帮 > 数学 > 作业

如图,在正方形ABCD中,点E在AB上,AE=3,BE=1,点P为对角线AC上任意一点,连结PB、PE.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 06:02:17
如图,在正方形ABCD中,点E在AB上,AE=3,BE=1,点P为对角线AC上任意一点,连结PB、PE.
当点P在AC上何处时,PB+PE取得最小值?请画出此时点P的位置,并求PB+PE的最小值.
如图,在正方形ABCD中,点E在AB上,AE=3,BE=1,点P为对角线AC上任意一点,连结PB、PE.
在正方形ABCD中,点E在AB上,AE=3,BE=1,点P为对角线AC上任意一点,连结PB、PE.当点P在AC上何处时,PB+PE取得最小值?请画出此时点P的位置,并求PB+PE的最小值.
过E作EF⊥AC,垂足为F,并延长使之与AD相交于M,连接BM,则BM与AC的交点就是所要求的P;此时PE+PB=PM+PB=BM=5,是PB+PE的最小值.
证明:∵ABCD是正方形,AC是对角线,∴按上面的作图方法所得M与E 关于AC对称,即AC是EM
的垂直平分线,故PE=PM,于是PE+PB=PM+PB=BM;当F偏离现在的位置到 P₁时,BMP₁构成一个三角形,故必有P₁B+P₁M>BM.
BM是RT△ABM的斜边,AB=4,AM=3,故BM=5.