f(x)在[0,1]连续,在(0,1)可导,且f(1)=0.求证:对所有n属于N,都存在a∈(0,1),使得:nf(a)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 19:10:57
f(x)在[0,1]连续,在(0,1)可导,且f(1)=0.求证:对所有n属于N,都存在a∈(0,1),使得:nf(a)+af'(a)=0
设F(x)=(x^n)*f(x),其中n为任意自然数.显然F(x)在闭区间0~1连续,开区间0~1可导,则F'(x)=n*x^(n-1)*f(x)+x^n*f'(x).因为F(0)=F(1)=0,F(x)在闭区间0~1连续,开区间0~1可导.由罗尔定理,必存在ξ属于开区间0~1,使得F'(ξ)=0,即n*ξ^(n-1)*f(ξ)+ξ^n*f'(ξ)=0.两边同除以ξ^(n-1),得n*f(ξ)+ξ*f'(ξ)=0.将ξ换为a,即得所证等式.证毕.
证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'
设函数f(x)在(0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在x0∈(0,1),使得nf(x0)+x0f
1.已知f(x)是定义在R上不恒为0的函数,且对任意的M,N∈R都满足f(M.N)=Mf(N)+Nf(M) a,求f(0
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)
b>a>0,f(x)在[a,b]上连续,在(a,b)内可导,证明,存在n属于(a,b)使得f(a)-f(b)=n(lna
求教一个微分中值定理的证明题 f(x)在[0,1]可导,f(1)=f(0)=0 证明存在n属于(0,1)使得f(n)+n
定义在(0,正无穷)上的函数f(x)满足对所有m>0,n属于R,有f(m^n)=nf(m),且当0
设f(x)在[0,1]上连续,且f(0)=f(1)=1/2,证明对任何自然数n>0,在(0,1)内至少存在一点c,使得f
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ
设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(