有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 19:08:01
有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体.
有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体在xOy面上的投影.标准答案是说想象两立体的形状,可知在xOy面上的投影方程为x^2+y^2=ax,z=0
可是我觉得很奇怪啊,为什么是x^2+y^2+z^2=a^2投影下来的圆可以覆盖x^2+y^2=ax的呀,怎么是后者为投影方程呢?
有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体在xOy面上的投影.标准答案是说想象两立体的形状,可知在xOy面上的投影方程为x^2+y^2=ax,z=0
可是我觉得很奇怪啊,为什么是x^2+y^2+z^2=a^2投影下来的圆可以覆盖x^2+y^2=ax的呀,怎么是后者为投影方程呢?
关键是这个的形状:x^2+y^2-ax=0
x^2-ax+y^2=0
x^2 - ax + (a/2)^2 + y^2=(a/2)^2
(x -a/2)^2 + y^2=(a/2)^2
这就是x^2+y^2-ax=0的形状,圆心位置不在原点的圆,圆心(a/2, 0) ,半径a/2 ,总之是柱面
它的半径小于a.所以在圆心(0, 0) ,半径a的圆内部,你画一下,我不会画图,sorry
所围成的立体:
底面为圆(上面我说的那个圆);
顶为球面的一部分,但偏了一些,像个什么呢?我到想不起来了;
侧面是柱面,中心轴和Z轴平行,但顶的高度不一样的,是立体椭圆.
x^2-ax+y^2=0
x^2 - ax + (a/2)^2 + y^2=(a/2)^2
(x -a/2)^2 + y^2=(a/2)^2
这就是x^2+y^2-ax=0的形状,圆心位置不在原点的圆,圆心(a/2, 0) ,半径a/2 ,总之是柱面
它的半径小于a.所以在圆心(0, 0) ,半径a的圆内部,你画一下,我不会画图,sorry
所围成的立体:
底面为圆(上面我说的那个圆);
顶为球面的一部分,但偏了一些,像个什么呢?我到想不起来了;
侧面是柱面,中心轴和Z轴平行,但顶的高度不一样的,是立体椭圆.
三重积分 求由柱面x=y^2,平面z=0及x+z=1所围成的立体
求由柱面x^2+y^2=Rx和球面x^2+y^2+z^2=R^2所围成的立体的体积
球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分
求有曲面z^2=x^2+y^2,柱面x^2+y^2=1及z=0所围成的曲顶柱体的体积 z^2表示z的2次幂
高数二次积分题,计算立体体积:旋转抛物面z=x^2+y^2,柱面y=x^2及平面y=1,z=0围成的立体
∫∫∫(xy)dxdydz ,其中Ω是由柱面x^2+y^2=1及平面z=1,z=0,x=0,y=0所围成的在第一卦限的闭
求柱面x^2+y^2=1,平面x+y+z=3及z=0围成立体的体积
高数--柱面方程分别求母线平行于X轴及Y轴而且通过曲线{2x^2+y^2+z^2=16和x^2+z^-y^2=0的柱面方
由抛物面z=2-x^2-y^2,柱面x^2+y^2=1及xoy平面所围成的空间立体体积(用二重积分)
微积分 求柱面:x^2+y^2=a^2被平面x+z=0及x-z=0(x>0,y>0)所截部分的面积
二重积分的计算问题~求由平面z=x-y,z=0与圆柱面x^2+y^2=2x在z>=0中所围成的空间体的体积.积分区域底面
∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域