作业帮 > 综合 > 作业

函数f(x)=lnx-ax,若f(x)有两个相异零点m、n,求证:mn大于e平方.a∈R 不要原来的答案

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 16:00:01
函数f(x)=lnx-ax,若f(x)有两个相异零点m、n,求证:mn大于e平方.a∈R 不要原来的答案
函数f(x)=lnx-ax,若f(x)有两个相异零点m、n,求证:mn大于e平方.a∈R 不要原来的答案
f(x)的导数为:f'(x)=1/x-a=(1-ax)/x.
当a0的范围内,f(x)只有一个零点,显然不合题意.
当a>0时,x∈(0,1/a),f(x)单调递增;x∈(1/a,+∞),f(x)单调递减;
由题意知,f(x)有m、n(m0,且m
再问: 所以有a(m+n)>(m+n)/m=1+n/m>1+1=2,即mn>e^2 这一步怎么来的?
再答: 因为1/e>a>1/n,所以有a(m+n)>(m+n)/n=1+n/m>1+1=2(因为n>m),即mn>e^2。 (因为可以证明m