作业帮 > 数学 > 作业

函数f(x)=(1/x)-1/(e^x-1)在x=0处连续,求f'(0).这道题用泰勒展开式来求,我都检查了很多遍,算出

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 06:06:27
函数f(x)=(1/x)-1/(e^x-1)在x=0处连续,求f'(0).这道题用泰勒展开式来求,我都检查了很多遍,算出来不对
函数f(x)=(1/x)-1/(e^x-1)在x=0处连续,求f'(0).这道题用泰勒展开式来求,我都检查了很多遍,算出
f(x)=1/x-1/(e^x-1)=[(e^x-1)-x]/[x(e^x-1)]
f'(x)=[(e^x-1)*x(e^x-1)-(e^x-1-x)*(e^x+xe^x-1)]/[x(e^x-1)]^2
=[(xe^2x-2xe^x+x)-((1+x)e^2x-(x^2+2x+2)e^x+1+x)]/[x(e^x-1)]^2
=[-e^2x+(x^2+2)e^x-1)]/[x(e^x-1)]^2
f'(0)=lim{[-e^2x+(x^2+2)e^x-1)]/[x(e^x-1)]^2}      x->0
=1/2lim{[-2e^2x+(x^2+2x+2)e^x]/[(x+x^2)e^2x-(2x+x^2)e^x+x)]}        洛必达法则
=1/2lim{[-4e^2x+(x^2+4x+4)e^x]/[(2x^2+4x+1)e^2x-(x^2+4x+2)e^x+1]}        洛必达法则
=1/2lim{[-8e^2x+(x^2+6x+8)e^x]/[(4x^2+12x+6)e^2x-(x^2+6x+6)e^x]}        洛必达法则
=1/2lim{[-8e^x+(x^2+6x+8)]/[(4x^2+12x+6)e^x-(x^2+6x+6)]}        约去e^x
=1/2lim{[-8e^x+(2x+6)]/[(4x^2+20x+18)e^x-(2x+6)]}        洛必达法则
=1/2*[-8+6]/[18-6]        x->0
=-1/12
PS:这道题用洛必达法则就行了,也蛮简单的,为嘛要用级数展开?
f(x)虽然在x=0处无定义,但其极限及导数却是存在的
limf(0)的值也同样可以用洛必达法则求出,而且有limf(0)左=limf(0)右=1/2
f(x)即f'(x)图像如下,只不过把x=0的那一点抠掉就行了

再问: 学理科就是不一样,能画出函数的图像。那我请问一下此题不能用泰勒展开式吗?
再答: 题本身肯定是可以用级数展开解答的 但我本人觉得级数太复杂,每一个都有N多项 所以我的级数当时学的是很差的 所以我个人是不知道怎么解的 你最好再求助于书本或别人