常微分方程求解:(1)1+y'=e^y (2)xy'+y=y^2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 01:02:40
常微分方程求解:(1)1+y'=e^y (2)xy'+y=y^2
1.∵1+y'=e^y ==>y'=e^y-1
==>dy/(e^y-1)=dx
==>e^(-y)dy/(1-e^(-y))=dx
==>d(1-e^(-y))/(1-e^(-y))=dx
==>ln│1-e^(-y)│=x+ln│C│ (C是积分常数)
==>1-e^(-y)=Ce^x
∴原方程的通解是1-e^(-y)=Ce^x (C是积分常数);
2.∵xy'+y=y² ==>xy'=y(y-1)
==>dy/[y(y-1)]=dx/x
==>[1/(y-1)-1/y]dy=dx/x
==>ln│y-1│-ln│y│=ln│x│+ln│C│ (C是积分常数)
==>(y-1)/y=Cx
==>y=Cxy+1
∴原方程的通解是y=Cxy+1 (C是积分常数)
==>dy/(e^y-1)=dx
==>e^(-y)dy/(1-e^(-y))=dx
==>d(1-e^(-y))/(1-e^(-y))=dx
==>ln│1-e^(-y)│=x+ln│C│ (C是积分常数)
==>1-e^(-y)=Ce^x
∴原方程的通解是1-e^(-y)=Ce^x (C是积分常数);
2.∵xy'+y=y² ==>xy'=y(y-1)
==>dy/[y(y-1)]=dx/x
==>[1/(y-1)-1/y]dy=dx/x
==>ln│y-1│-ln│y│=ln│x│+ln│C│ (C是积分常数)
==>(y-1)/y=Cx
==>y=Cxy+1
∴原方程的通解是y=Cxy+1 (C是积分常数)
求解微分方程(xy^2+x)dx+(y-x^2y)dy=0,y(2)=1的通解
常微分方程y'=(x+y+1)^2的通解
求解微分方程(1-2xy)dy/dx=y(y-1),
求解微分方程y'=(x-y+1)^2,
求微分方程y'=(1+y^2)/xy的通解
微分方程y''-3y'+2y=5,y(0)=1,y'(0)=2求解过程
求解微分方程 x^2*dy/dx=xy-y^2
【【求解微分方程】】xy'+y=x^2+3x+2
求解一个微分方程:(2x·y^2-y)dx+(y^2+xy)dy = 0
微分方程求解 (x^2y^3+xy)dy=dx
解微分方程题求解微分方程:(1) xy' +2 = (x^3)(y-1)y' 提示:可把x与y 互换而后解原方程(2)
2道高数解微分方程题 1.{xy'+(1-x)y=e^2xy│x=ln2 =02.y"-3y'+2y=xe^3x