作业帮 > 数学 > 作业

f(x)=√x+√1- x ,设√x=t,即f(X)=t+√1-t² x∈[0 1] 怎么求值域.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 12:50:54
f(x)=√x+√1- x ,设√x=t,即f(X)=t+√1-t² x∈[0 1] 怎么求值域.
f(x)=√x+√1- x ,设√x=t,即f(X)=t+√1-t² x∈[0 1] 怎么求值域.
本题用换元法较繁.
f(x)=√x+√1-x=√[x+1-x+2√x(1-x)]=√1+2√-x²+x
∵-x²+x≥0
∴0≤x≤1
当x=1/2时,得最大值,u(x)=-x²+x=1/4
∴f(x)max=√2
当x=0或1时,得最小值,u(x)=-x²+x=0
∴f(x)min=1
∴值域为[1,√2]
再问: f(x)=√x+√1-x=√[x+1-x+2√x(1-x)]=√1+2√-x²+x 怎么推出的? 你是如何想到的?大神。
再答: √a+√b=√(√a+√b)²=√a+b+2√ab