(2011•聊城一模)如图,四棱锥中S-ABCD中,底面ABCD是棱形,其对角线的交点为O,且SA=AC,SA⊥BD,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 20:54:55
(2011•聊城一模)如图,四棱锥中S-ABCD中,底面ABCD是棱形,其对角线的交点为O,且SA=AC,SA⊥BD,
(Ⅰ)求证:SO⊥平面ABCD;
(Ⅱ)设∠BAD=60°,AB=SO=2,P是侧棱上的一点,且SD⊥平面APC,求直线SB与平面APC所成的角的正弦值.
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点M,使SM∥平面APC?若存在,求出BM的长,若不存在,说明理由.
(Ⅰ)求证:SO⊥平面ABCD;
(Ⅱ)设∠BAD=60°,AB=SO=2,P是侧棱上的一点,且SD⊥平面APC,求直线SB与平面APC所成的角的正弦值.
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点M,使SM∥平面APC?若存在,求出BM的长,若不存在,说明理由.
(I)证明:∵四棱锥中S-ABCD中,底面ABCD是菱形,
∴AC⊥BD,又由SA⊥BD,SA∩AC=A
∴BD⊥平面SAC,又由SO⊂平面SAC,
∴SO⊥BD,
又由SA=AC,O为AC的中点,
故SO⊥AC,又由BD∩AC=O
∴SO⊥平面ABCD;
(Ⅱ)以O为原点,以OA,OB,OS为X,Y,Z轴正方向建立空间坐标系
∵∠BAD=60°,底面ABCD为菱形,
∴△ABD和△BCD都是等边三角形,
又由AB=SO=2,
∴B(0,1,0),D(0,-1,0),S(0,0,2),C(-
3,0,0)
∴
SB=(0,1,-2),
SD=(0,-1,-2)
∵SD⊥平面APC,
∴
SD=(0,-1,-2)是平面APC的一个法向量
∵cos<
SB,
SD>=
−1+4
5×
5=
∴AC⊥BD,又由SA⊥BD,SA∩AC=A
∴BD⊥平面SAC,又由SO⊂平面SAC,
∴SO⊥BD,
又由SA=AC,O为AC的中点,
故SO⊥AC,又由BD∩AC=O
∴SO⊥平面ABCD;
(Ⅱ)以O为原点,以OA,OB,OS为X,Y,Z轴正方向建立空间坐标系
∵∠BAD=60°,底面ABCD为菱形,
∴△ABD和△BCD都是等边三角形,
又由AB=SO=2,
∴B(0,1,0),D(0,-1,0),S(0,0,2),C(-
3,0,0)
∴
SB=(0,1,-2),
SD=(0,-1,-2)
∵SD⊥平面APC,
∴
SD=(0,-1,-2)是平面APC的一个法向量
∵cos<
SB,
SD>=
−1+4
5×
5=
如图,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交S
如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,∠ABC=45°,SA=SB,证明:S
如图,如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.
如图,在四棱锥S-ABCD种中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA⊥底面ABCD且SA=2,AD=D
在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点,求证
平面与平面垂直判定,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点
四棱锥S-ABCD中、底面ABCD为平行四边形、侧面SBC垂直底面ABCD、已知角ABC为45度、SA=SB、求证SA=
如图,在四棱锥s—abc中,底面abcd是矩形,sa垂直于底面abcd
如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90度,SA⊥面ABCD,SA=AB=BC=1,AD=1/2.
如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=1/2