作业帮 > 数学 > 作业

(2011•聊城一模)如图,四棱锥中S-ABCD中,底面ABCD是棱形,其对角线的交点为O,且SA=AC,SA⊥BD,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 20:54:55
(2011•聊城一模)如图,四棱锥中S-ABCD中,底面ABCD是棱形,其对角线的交点为O,且SA=AC,SA⊥BD,
(Ⅰ)求证:SO⊥平面ABCD;
(Ⅱ)设∠BAD=60°,AB=SO=2,P是侧棱上的一点,且SD⊥平面APC,求直线SB与平面APC所成的角的正弦值.
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点M,使SM∥平面APC?若存在,求出BM的长,若不存在,说明理由.
(2011•聊城一模)如图,四棱锥中S-ABCD中,底面ABCD是棱形,其对角线的交点为O,且SA=AC,SA⊥BD,
(I)证明:∵四棱锥中S-ABCD中,底面ABCD是菱形,
∴AC⊥BD,又由SA⊥BD,SA∩AC=A
∴BD⊥平面SAC,又由SO⊂平面SAC,
∴SO⊥BD,
又由SA=AC,O为AC的中点,
故SO⊥AC,又由BD∩AC=O
∴SO⊥平面ABCD;
(Ⅱ)以O为原点,以OA,OB,OS为X,Y,Z轴正方向建立空间坐标系
∵∠BAD=60°,底面ABCD为菱形,
∴△ABD和△BCD都是等边三角形,
又由AB=SO=2,
∴B(0,1,0),D(0,-1,0),S(0,0,2),C(-
3,0,0)


SB=(0,1,-2),

SD=(0,-1,-2)
∵SD⊥平面APC,


SD=(0,-1,-2)是平面APC的一个法向量
∵cos<

SB,

SD>=
−1+4


5=