设f(x)=(1+a)x^4+x^3-(3a+2)x^2-4a,试证明对任意的实数a,存在x0,恒有f(x0)≠0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 03:10:33
设f(x)=(1+a)x^4+x^3-(3a+2)x^2-4a,试证明对任意的实数a,存在x0,恒有f(x0)≠0
f(x)
=(1+a)x^4+x^3-(3a+2)x^2-4a
=(x^4+x^3-2x^2)+(ax^4-3ax^2-4a)
=(x^2+x-2)x^2+a(x^4-3x^2-4)
=(x+2)(x-1)x^2+a(x^2-4)(x^2+1)
=(x+2)(x-1)x^2+a(x+2)(x-2)(x^2+1)
=(x+2)[(x-1)x^2+a(x-2)(x^2+1)]
对任意的实数a,存在x0,恒有f(x0)≠0,即对任意的实数a,存在x0,恒有f(x0)与a值无关,其f(x0)≠0
显然有x+2=0和(x-2)(x^2+1)=0,恒有f(x)与a值无关,但又f(x)≠0,故只有(x-2)(x^2+1)=0符合
当(x-2)(x^2+1)=0时,f(x)与a无关,此时x=2
再问: 为什么只有x+2=0和(x-2)(x^2+1)=0?为什么不能有(x-1)=0?
再答: 请注意,f(x)=(x+2)*[(x-1)x^2+a(x-2)(x^2+1)] x-1=0时,f(x)=f(1)=3*[a*(-1)*2]=-6a
=(1+a)x^4+x^3-(3a+2)x^2-4a
=(x^4+x^3-2x^2)+(ax^4-3ax^2-4a)
=(x^2+x-2)x^2+a(x^4-3x^2-4)
=(x+2)(x-1)x^2+a(x^2-4)(x^2+1)
=(x+2)(x-1)x^2+a(x+2)(x-2)(x^2+1)
=(x+2)[(x-1)x^2+a(x-2)(x^2+1)]
对任意的实数a,存在x0,恒有f(x0)≠0,即对任意的实数a,存在x0,恒有f(x0)与a值无关,其f(x0)≠0
显然有x+2=0和(x-2)(x^2+1)=0,恒有f(x)与a值无关,但又f(x)≠0,故只有(x-2)(x^2+1)=0符合
当(x-2)(x^2+1)=0时,f(x)与a无关,此时x=2
再问: 为什么只有x+2=0和(x-2)(x^2+1)=0?为什么不能有(x-1)=0?
再答: 请注意,f(x)=(x+2)*[(x-1)x^2+a(x-2)(x^2+1)] x-1=0时,f(x)=f(1)=3*[a*(-1)*2]=-6a
设a>0,函数f(x)=1/x^2+a 证明:存在唯一实数x0∈(0,1/a),使f(x0)=x0
设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
设f(x)=(1+a)x^4+x^3-(3a+2)x^2-4a,试证明对任意的实数a,方程f(x)=0总有相同实根
对于函数f(x)=ax2+(b+1)x+b-2,(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
f(x)=ax^2+(b+1)x+b-2,(a不等于0),有实数x0使f(x0)=x0,则X0叫不动点
设[a,b]是一个有限闭区间,如果对任意x0属于[a,b],f(x)在x=x0处的极限都存在,证明:f(x)在闭区间[a
设f(x)=3ax+1-2a在(-1,1)上存在x0使f(x0)=0,则实数a的取值范围是( )
已知函数f(x)=x*3-x*2+x/2+1/4,证明:存在x0属于0到1/2,使f(x0)=x0.
已知函数f(x)=x^2-4x+a+3,g(x0=mx+5-2m,当a=0时,对任意的x1∈[1,4],总存在x2∈[1
求取值范围的,已知函数a(4^x)-2^(x+1)+a+3若存在实数x0∈[-1,1] 使f(x0)=4,求实数a的取值