作业帮 > 综合 > 作业

八(一)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/20 08:49:28
八(一)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;
(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.

阅读后回答下列问题:
(1)方案(Ⅰ)是否可行?请说明理由;
(2)方案(Ⅱ)是否可行?请说明理由;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.
八(一)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
(1)方案(Ⅰ)可行;
∵DC=AC,EC=BC且有对顶角∠ACB=∠DCE
∴△ACB≌△DCE(SAS)
∴AB=DE
∴测出DE的距离即为AB的长
故方案(Ⅰ)可行.
(2)方案(Ⅱ)可行;
∵AB⊥BC,DE⊥CD
∴∠ABC=∠EDC=90°
又∵BC=CD,∠ACB=∠ECD
∴△ABC≌△EDC
∴AB=ED
∴测出DE的长即为AB的距离
故方案(Ⅱ)可行.
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.
若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;
理由:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,
∴△ABC∽△EDC,

AB
ED=
BC
CD,
∴只要测出ED、BC、CD的长,即可求得AB的长.
但是此题没有其他条件,可能无法测出其他线段长度,
∴方案(Ⅱ)不成立.
某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案: 某校七一班学生到野外活动,为测量一池塘两端A,B的距离,设计出如下几种方案:(1)如图1, (本小题满分12分)某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先 某校七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案.设 某中学七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案, 某校八年级(1)班学生参加社会实践活动,为测量一池塘两端A、B的距离,设计了如下方案.先过B点作AB的垂线BM,再在BM 某校数学兴趣小组,为了测量一个池塘A,B两端的距离,设计了如下几种方案: 八(1)班同学上数学活动课,利用角尺平分一个角设计了如下方案: 八(1)班同学上数学活动课,利用角尺平分一个角,设计了如下方案 如图所示,有一池塘,要测量池塘两端A、B的距离,请用构造全等三角形的方法,设计一个测量方案(画出图形),并说明测量步骤和 八(1)班同学上数学活动课,利用角尺平分一个角设计了如下方案:30 依恋娇娇 | 2011-07 如图,要测一池塘两端A、B的距离,请你利用三角形知识设计一个测量方案.