已知动圆的方程,求其圆心轨迹方程的方法
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 10:51:51
已知动圆的方程,求其圆心轨迹方程的方法
已知动圆的方程x2+y2-2ax+2(a-2)y+2=0,其中a不等于1,(1)求证上述圆恒过定点,(2)求恒与圆相切的直线方程(3)求圆心轨迹方程
已知动圆的方程x2+y2-2ax+2(a-2)y+2=0,其中a不等于1,(1)求证上述圆恒过定点,(2)求恒与圆相切的直线方程(3)求圆心轨迹方程
(1)动圆的方程x2+y2-2ax+2(a-2)y+2=0,
可化为x^2+y^2-4y+2-2a(x-y)=0,
它过曲线x^2+y^2-4y+2=0和x-y=0的交点A(1,1).
(2)配方得动圆的方程为(x-a)^2+[y-(2-a)]^2=2a^2-4a+2=2(a-1)^2,
当a→1时它退缩为点A,
∴恒与圆相切的直线过点A,设它的方程为kx-y-k+1=0,
圆心到切线的距离等于半径,
∴|ka-(2-a)-k+1|/√(k^2+1)=(√2)|a-1|,而a≠1,
∴|k+1|=√〔2(k^2+1)〕,
平方得k^2+2k+1=2k^2+2,
k^2-2k+1=0,
k=1.
∴恒与圆相切的直线方程为x-y=0.
(3)圆心坐标x=a,y=2-a,
∴x+y-2=0,为所求.
可化为x^2+y^2-4y+2-2a(x-y)=0,
它过曲线x^2+y^2-4y+2=0和x-y=0的交点A(1,1).
(2)配方得动圆的方程为(x-a)^2+[y-(2-a)]^2=2a^2-4a+2=2(a-1)^2,
当a→1时它退缩为点A,
∴恒与圆相切的直线过点A,设它的方程为kx-y-k+1=0,
圆心到切线的距离等于半径,
∴|ka-(2-a)-k+1|/√(k^2+1)=(√2)|a-1|,而a≠1,
∴|k+1|=√〔2(k^2+1)〕,
平方得k^2+2k+1=2k^2+2,
k^2-2k+1=0,
k=1.
∴恒与圆相切的直线方程为x-y=0.
(3)圆心坐标x=a,y=2-a,
∴x+y-2=0,为所求.
已知动圆过定点(1,0),且与直线x=-1相切.求,(1)动圆的圆心轨迹C的方程;
动点的轨迹方程
已知圆X2 Y2-6X-55=0,动圆M经过定点A(-3,0),且与已知圆相内切,求圆心M的轨迹方程.
已知定圆C:(x-3)^2+y^2=64,动圆M和已知圆内切,且过点P(-3,0),圆心M的轨迹方程
已知动圆过定点(1,0),且与直线x=-1相切1求动圆的圆心轨迹c的方程
已知动圆M过定点(1,0),且与直线x=-1相切,求动圆M的圆心轨迹C的方程.
已知动圆过(1,0),且与直线x=-1相切(1)求动圆的圆心轨迹C的方程
已知动圆M与圆C:(x+2)^2+y^2=2内切,且过点A(2,0),求圆心M的轨迹方程
已知动圆C与定圆M:(x-2)^2+y^2=1相切,且与y轴相切,则圆心C的轨迹方程_____
求圆心c的轨迹方程
已知动圆P与动圆C:(x+2)平方+Y平方=1相外切,又与定直线L:X=1相切,那么动圆的圆心P的轨迹方程是?
求圆心C的轨迹方程已知定点A(3,0)和定圆B:(X+3)^2+Y^2=16,动圆C与圆B外切,且过点A,求动圆的圆心C