欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足
设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
设a1,a2...as和b1,b2...bs是两个线性无关的n维向量组,并且每个a1和b1都正交,证明a1...as,b
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则
线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)
设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量
证明向量组b1,b2..,bm与向量组a1,a2,..,am有相同的秩
设n维列向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为
向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为
向量组B:b1,b2,……,bm能由向量组A:a1,a2,……,am线性表示的充要条件是( )
设向量组a1,a2,a3 线性无关,又向量组b1=a1 ,b2=a1+a2,b3=a1+a2+a3,证明b1,b2,b3
向量组a1,a2,...,as线性无关,且可以由向量组B1,B2...,Bt线性表出,则s与t的关系
设向量组{a1,a2.ak}线性无关,向量组{b1,b2,.bk}满足b1=a1-λa2,b2=a2+λa3..