一道平面向量的证明题在△ABC中,任作一条直线l,分别交直线AB,AC于D,E,若 (向量AD)=x×(向量AB) ,(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 15:12:50
一道平面向量的证明题
在△ABC中,任作一条直线l,分别交直线AB,AC于D,E,若 (向量AD)=x×(向量AB) ,(向量AE)=y×(向量AC) ,求证:1/x+1/y=3 的充要条件是 直线l恒过△ABC重心G.
(原题无图)
在△ABC中,任作一条直线l,分别交直线AB,AC于D,E,若 (向量AD)=x×(向量AB) ,(向量AE)=y×(向量AC) ,求证:1/x+1/y=3 的充要条件是 直线l恒过△ABC重心G.
(原题无图)
依题意,假设L就是过重心G的一条直线,若能证明出1/x+1/y=3也就能说明问题:1/x+1/y=3 的充要条件是:直线L恒过△ABC重心G.
下面就证明过G的直线L能推导出1/x+1/y=3
延长AG交BC于M
由直线的向量形式的参数方程得:(打“向量”太麻烦,下面我都不打向量二字,写在前的表起点,写在后的表终点)AG=kAD+(1-k)AE
因为AD=xAB,AE=yAC
所以AG=kxAB+(1-k)yAC ①
又G为三角形的重心,所以M为三角形的中线(即M为BC中点)
所以AM=1/2AB+1/2AC
且AG=2/3AM,得到AG=1/3AB+1/3AC ②
所以由①②:1/3AB+1/3AC=kxAB+(1-k)yAC
所以1/3=kx,1/3=(1-k)y
消去k得1/x+1/y=3
希望我的回答你能满意!
下面就证明过G的直线L能推导出1/x+1/y=3
延长AG交BC于M
由直线的向量形式的参数方程得:(打“向量”太麻烦,下面我都不打向量二字,写在前的表起点,写在后的表终点)AG=kAD+(1-k)AE
因为AD=xAB,AE=yAC
所以AG=kxAB+(1-k)yAC ①
又G为三角形的重心,所以M为三角形的中线(即M为BC中点)
所以AM=1/2AB+1/2AC
且AG=2/3AM,得到AG=1/3AB+1/3AC ②
所以由①②:1/3AB+1/3AC=kxAB+(1-k)yAC
所以1/3=kx,1/3=(1-k)y
消去k得1/x+1/y=3
希望我的回答你能满意!
过ΔABC的重心作一条直线分别交AB,AC于D,E,若向量AD=x向量AB.向量AE=y向量AC,(xy≠0),求1/x
在三角形abc中,o是重心,过点o作任意作一直线分别交abac于点d,e若向量ad等于x倍ab,向量ae等于y倍向量ac
(三角形ABC中,D为BC中点,G为AD中点,过点G任意作意直线MN分别交AB,AC于MN,若向量AM=X向量AB,向量
过三角形ABC的重心作一条直线交AB AC 于D E 若向量AD=XAB AE=YAC 则X的倒数加Y的倒数为?
三角形ABC中,D是BC中点,过线段AD中点作直线l与AB,AC分别交于M,N,且向量AM=xAB,向量AN=yAC,
一道数学向量的题如图,三角形ABC中,D为BC的中点,G为AD的中点,过点G在作一直线MN分别交AB,AC于M,N两点,
在△ABC中,向量AB乘以向量AC=0,|向量AB|=8,|向量AC|=6,l为线段BC的垂直平分线,l与C交于点D,E
已知△ABC中,点D是BC 的中点,过点D 的直线分别交直线AB、AC于E、F两点,若向量AB=λAE(λ>0),AC=
在三角形abc中,D,E分别是BC,AC的中点,F为AB上一点,且向量AB=4向量AF,若向量AD=X向量AF+Y向量A
点G是三角形ABC的重心,过G作直线与AB,AC两边分别交于M,N两点 ,且向量AM=x向量AB,向量AN=y向量AC,
在三角形ABC中,D为BC边的中点.向量AM=m向量AB,向量AN=n向量AC,MN与AD交于点P点,向量AP=x向量A
如图所示,已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且向量AM=x向量AB,向量AN=y向