已知∠ABC是90°,△ABE是等边三角形,点P为射线BC上任意一点【点P与点不重合】连结AP将AP绕点A旋
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 08:46:11
已知∠ABC是90°,△ABE是等边三角形,点P为射线BC上任意一点【点P与点不重合】连结AP将AP绕点A旋
60°得到线段AQ连结QE并延长射线BC于点F
如图2 当BP等于BA ,∠EBF=?猜想∠QFC=?
当点P为射线BC上任意一点时猜想∠QFC=?加以证明
已知道线段AB等于2根号3,设BP=X,点Q到射线BC的距离为Y,求Y关于X的函数关系
60°得到线段AQ连结QE并延长射线BC于点F
如图2 当BP等于BA ,∠EBF=?猜想∠QFC=?
当点P为射线BC上任意一点时猜想∠QFC=?加以证明
已知道线段AB等于2根号3,设BP=X,点Q到射线BC的距离为Y,求Y关于X的函数关系
(1)∠EBF=30°;
∠QFC=60°;
(2)∠QFC=60°.
不妨设BP> √3AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
(事实上当BP≤√ 3AB时,如图2情形,不失一般性结论仍然成立)
(3)在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√ 3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG= BE/2=√ 3,
∴BF= BG/cos30°=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF=√ 3/2(x+2).(x>0)
即y关于x的函数关系式是:y= √3/2x+ √3.
∠QFC=60°;
(2)∠QFC=60°.
不妨设BP> √3AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
(事实上当BP≤√ 3AB时,如图2情形,不失一般性结论仍然成立)
(3)在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√ 3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG= BE/2=√ 3,
∴BF= BG/cos30°=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF=√ 3/2(x+2).(x>0)
即y关于x的函数关系式是:y= √3/2x+ √3.
已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点,(点P与B不重合)连结AP,将线段AP绕点A逆时针
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP
已知∠ABC等于90度,三角形ABC是等边三角形,点P是射线BC上任意一点,点B和点P不重合,连接AP,将线段AP绕A逆
已知∠ABC=90°,△ABE是等边三角形,点p为射线BC上任意一点(点P与点B不重合)连接AB,∠QAP=60°,AQ
如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△A
(2012•绍兴三模)已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC
如图甲,已知∠ABC=90°,△ABD是边长为2的等边三角形,点E为射线BC上任意一点(点E与点B不重合),连结AE,在
已知角ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以线段AB.AP为边在角
如图1,已知角ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点
如图,在等腰△ABC中,CH是底边上的高,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,
如图 在等腰△ABC中 CH是底边上的高线 点P是线段CH上不与端点重合的任意一点 连结AP交BC于点E