作业帮 > 数学 > 作业

已知∠ABC是90°,△ABE是等边三角形,点P为射线BC上任意一点【点P与点不重合】连结AP将AP绕点A旋

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 08:46:11
已知∠ABC是90°,△ABE是等边三角形,点P为射线BC上任意一点【点P与点不重合】连结AP将AP绕点A旋
60°得到线段AQ连结QE并延长射线BC于点F
如图2 当BP等于BA ,∠EBF=?猜想∠QFC=?
当点P为射线BC上任意一点时猜想∠QFC=?加以证明
已知道线段AB等于2根号3,设BP=X,点Q到射线BC的距离为Y,求Y关于X的函数关系
已知∠ABC是90°,△ABE是等边三角形,点P为射线BC上任意一点【点P与点不重合】连结AP将AP绕点A旋
(1)∠EBF=30°;
∠QFC=60°;
(2)∠QFC=60°.                      
不妨设BP> √3AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.                       
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)                
∴∠AEQ=∠ABP=90°.                             
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.             
(事实上当BP≤√ 3AB时,如图2情形,不失一般性结论仍然成立)
(3)在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√ 3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG= BE/2=√ 3,
∴BF= BG/cos30°=2.
∴EF=2.                                 
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.                            
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF=√ 3/2(x+2).(x>0)
即y关于x的函数关系式是:y= √3/2x+ √3.