已知点P(x0,y0)在直线x+y-2=0上,若圆O:x2+y2=1(O为坐标原点)上存在点Q使得∠OPQ=30°,则x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:15:40
已知点P(x0,y0)在直线x+y-2=0上,若圆O:x2+y2=1(O为坐标原点)上存在点Q使得∠OPQ=30°,则x0的取值范围为______.
过P作⊙C切线交⊙C于R,
根据圆的切线性质,有∠OPR≥∠OPQ=30°.
反过来,如果∠OPR≥30°,
则⊙C上存在一点点Q使得∠OPQ=30°.
∴若圆C上存在点Q,使∠OPQ=30°,
则∠OPR≥30°.
∵|OR|=1,
∴|OP|>2时不成立,
∴|OP|≤2.
又∵|OP|2=x02+y02=x02+(x0-2)2=2x02-4x0+2
∴2x02-4x0+2≤2,
解得,0≤x02≤2.
∴x0的取值范围是[0,2]
故答案为:[0,2].
根据圆的切线性质,有∠OPR≥∠OPQ=30°.
反过来,如果∠OPR≥30°,
则⊙C上存在一点点Q使得∠OPQ=30°.
∴若圆C上存在点Q,使∠OPQ=30°,
则∠OPR≥30°.
∵|OR|=1,
∴|OP|>2时不成立,
∴|OP|≤2.
又∵|OP|2=x02+y02=x02+(x0-2)2=2x02-4x0+2
∴2x02-4x0+2≤2,
解得,0≤x02≤2.
∴x0的取值范围是[0,2]
故答案为:[0,2].
已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,P,Q中点为M(x0,y0),且y0>x0+2,求y0/
已知直线y=ax+3与圆x2+y2+2x-8=0相交于A,B两点,点P(x0,y0)在直线y=2x上,且PA=PB,则x
点P在直线X+3Y-1=0上,点Q在直线X+3Y+3=0上,PQ的中点M(X0,Y0) 且 Y0>X0+2 则Y0/X0
已知直线y=-2上有一个动点Q,过点Q作直线l 1 垂直于x轴,动点P在l 1 上,且满足OP⊥OQ(O为坐标原点),记
(2014•甘肃二模)已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,PQ的中点为M(x0,y0),且y
在线等待已知直线y=ax+3与圆x2+y2-2x-8=0相交于A,B两点,点P(x0,y0)在直线y=2x上,且PA=P
已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程
已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程&n
已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程.
已知点P(x0,y0)式抛物线y=3x2+6x+1上一点,且f′(x0)=0,则P点坐标为( )
已知直线L:2X+4y+3=0,P为L上的动点,O为坐标原点,点Q分线段OP为1:2两部分,则点Q的轨迹方程是
已知在平面直角坐标系中,点Q 的坐标为(4,0),点P是直线y=-2x+3上在第一象限内的一点。设三角形OPQ的面积为S