1.点p是圆x^2+y^2=16上的动点,PQ垂直于x轴,垂足为Q,求垂线段PQ中点m的轨迹方程
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 10:29:18
1.点p是圆x^2+y^2=16上的动点,PQ垂直于x轴,垂足为Q,求垂线段PQ中点m的轨迹方程
2.求到定点F(2,2)的距离等于到定直线X+Y=1的距离相等的点的轨迹
2.求到定点F(2,2)的距离等于到定直线X+Y=1的距离相等的点的轨迹
1.x^2+4y^2=16
2.x^2+y^2-6x-6y-2xy+15=0
再问: 要具体过程 谢谢
再答: 1.设M点的坐标为(x,y),如果你画图的话,很容易知道此时P点的坐标应该是(x,2y),因为P点在圆上,它的坐标应该满足横坐标平方和纵坐标平方和为16,也就是x^2+(2y)^2=16,也就是x^2+4y^2=16 2.设点K(x,y)满足上面的条件,K到F的距离的平方为(x-2)^2+(y-2)^2,而K到直线的距离的平方为1/2*(x+y-1)^2,两个式子相等,然后整理就得到x^2+y^2-6x-6y-2xy+15=0 ,这就是K点的坐标必须满足的条件,话句话说,这个就是所求点的轨迹。
2.x^2+y^2-6x-6y-2xy+15=0
再问: 要具体过程 谢谢
再答: 1.设M点的坐标为(x,y),如果你画图的话,很容易知道此时P点的坐标应该是(x,2y),因为P点在圆上,它的坐标应该满足横坐标平方和纵坐标平方和为16,也就是x^2+(2y)^2=16,也就是x^2+4y^2=16 2.设点K(x,y)满足上面的条件,K到F的距离的平方为(x-2)^2+(y-2)^2,而K到直线的距离的平方为1/2*(x+y-1)^2,两个式子相等,然后整理就得到x^2+y^2-6x-6y-2xy+15=0 ,这就是K点的坐标必须满足的条件,话句话说,这个就是所求点的轨迹。
设P是圆x²+y²=1上的动点,过P作x轴的垂线,垂足为Q,求PQ中点M的轨迹方程
已知P是圆x2+y2=9,上任意一点,由P点向x轴做垂线段PQ,垂足为Q,求PQ中点M的轨迹方程.
已知点P是圆x^2+y^2=4上的动点,定点Q(4,0)求线段PQ中点M的轨迹方程
已知定点Q(4,0),P为圆x^2+y^2=4上的一个动点,点M在线段PQ上,PQ向量=2MQ向量,求点M的轨迹方程
已知定点P(1,0),动点Q在圆C:(x+1)^2+y^2=16上,PQ的垂线交CQ于点M,则动点M的轨迹方程是——
p在圆x²+y²=4上,作pQ垂直于x轴交轴于点Q,求pQ中点的轨迹方程
已知圆x^2+y^2=8上的动点P及定点Q(0,4)则线段PQ的中点M的轨迹方程是?
p是圆O:x2+y2=4上的动点,过点p作x轴的垂线,垂足为Q,若PQ中点M的轨迹记为
经过圆x^2+y^2=4上任意一点P作X轴的的垂线,垂足为Q,求线段PQ的中点M的轨迹方程
经过圆x²+y²=4上任意一点P作Y轴的垂线,垂足为Q,求PQ中点的轨迹方程.
已知点p是圆x+y=4上一个动点 定点Q的坐标为(4,0) 求线段PQ的中点的轨迹方程
设P为双曲线x2/16-y2/4=1的一个动点,P在x轴上的射影为Q,M是线段PQ的中点,求M点的轨迹方程.