f(x)在开区间(a,b)上连续,且lim x→a+ = -∞ ,lim x→b- = -∞,证明:f(x)在开区间(a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:45:11
f(x)在开区间(a,b)上连续,且lim x→a+ = -∞ ,lim x→b- = -∞,证明:f(x)在开区间(a,b)内有最大值.
原题这里错了,应该是这样:lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
原题这里错了,应该是这样:lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
用反证法
假设f(x)在开区间(a,b)内没有最大值
即存在一点x0,aA
因为f(x)在开区间(a,b)上连续,lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
所以在(a,x1]中存在数a1、a2、……、an,使得f(a1)=f(a2)=……=f(an)=A,在[x1,b)中存在数b1、b2、……、bm,使得f(b1)=f(b2)=……=f(bm)=A,
设a0=min{a1、a2、……、an},b0=max{b1、b2、……、bm}
则在[a0,b0]这个闭区间上f(x)连续且没有最大值,就是无界.这和在闭区间上的连续的函数在该区间上有界且一定能取得它的最大值和最小值.矛盾
假设f(x)在开区间(a,b)内没有最大值
即存在一点x0,aA
因为f(x)在开区间(a,b)上连续,lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
所以在(a,x1]中存在数a1、a2、……、an,使得f(a1)=f(a2)=……=f(an)=A,在[x1,b)中存在数b1、b2、……、bm,使得f(b1)=f(b2)=……=f(bm)=A,
设a0=min{a1、a2、……、an},b0=max{b1、b2、……、bm}
则在[a0,b0]这个闭区间上f(x)连续且没有最大值,就是无界.这和在闭区间上的连续的函数在该区间上有界且一定能取得它的最大值和最小值.矛盾
设函数f(x)在区间[a,b]上连续,则lim(x->a)∫(a->x)f(t)dt=____,lim(x->a)1/(
设f'(x)在[a,b]上连续,证明:lim(λ→+∞)∫(a,b)f(x)cos(λx)dx=0
设函数f(x)在区间[a,+∞)上连续,有lim(x→+∞)f(x)存在且有限.证明:f(x)在[a,+∞)上有界
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
设函数f(x)在闭区间[a,b]上连续,且f(a)b,证明在开区间(a,b)内至少有一个点x,使得f(x)=x
罗尔定理扩展的证明设函数f ( x)在有限区间( a,b)内可导,且lim f ( x) = limf ( x) ,则在
函数f(x)证明题如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0,那么在开
f(x)在闭区间a,b 上连续 则F(X)=∫a到x (x-t)f(t)dt在开区间a,b内
若f(x)在[a,b)上连续,且lim f(x) (x->b-) 存在,证明f(x)在[a,b)上有界.
假设f(x)在区间[a,b]上连续 在(a,b)内可导 且f'(x)
已知f(x)在[a,b]有界可积证明lim(p→+∞)∫(a,b)f(x)sinpxdx=0
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少