已知a^2+b^2=1,b^2+c^2=2,c^2+a^2=2,则ab+bc+ca的最小值是多少?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:09:13
已知a^2+b^2=1,b^2+c^2=2,c^2+a^2=2,则ab+bc+ca的最小值是多少?
选项A:(3^1/2)-1/2 B:1/2-(3^1/2)
C:-1/2-(3^1/2) D:1/2+(3^1/2)
选项A:(3^1/2)-1/2 B:1/2-(3^1/2)
C:-1/2-(3^1/2) D:1/2+(3^1/2)
解得:
c^2=3/2
a^2=1/2
b^2=1/2
ab+bc+ca
=((a+b+c)^2 -(aa+bb+cc))/2
=1/2(a+b+c)^2 - 5/4
当(a+b+c)^2最小时,得到最小值,
显然是当c为负,a,b为正;或a,b为负,c为正时,
a+b+c离0最近
(a+b+c)^2 = (-√(3/2) + √2)^2 = 7/2 - 2√3
所以最小值:
1/2-√3
选B
c^2=3/2
a^2=1/2
b^2=1/2
ab+bc+ca
=((a+b+c)^2 -(aa+bb+cc))/2
=1/2(a+b+c)^2 - 5/4
当(a+b+c)^2最小时,得到最小值,
显然是当c为负,a,b为正;或a,b为负,c为正时,
a+b+c离0最近
(a+b+c)^2 = (-√(3/2) + √2)^2 = 7/2 - 2√3
所以最小值:
1/2-√3
选B
已知a×a+b×b=1,b×b+c×c=2,c×c+a×a=2,求ab+bc+ca的最小值是多少?
已知实数a.b.c满足a^+b^=1,b^+c^=2,c^+a^=2,则ab+bc+ca的最小值为?
已知实数a,b,c满足a^2+b^2=1,b^2+c^2=2,c^2+a^2=2,则ab+bc+ca的最小值是多少
已知实数a、b、c满足a×a+b×b=1,b×b+c×c=2,c×c+a×a=2,则ab+bc+ac的最小值是多少?
已知实数a,b,c满足a平方+b平方=1,b平方+c平方=2,c平方+a平方=2,则ab+bc+ca的最小值是
已知a,b,c∈R+,求证:ab+bc+ca=3abc.求证ab/a+b + bc/b+c + ca/c+a≥3/2 急
已知a^2+b^2=1,b^2+c^2=2,a^2+c^2=2,则ab+ac+bc的最小值是多少?
已知a^2+b^2+c^2=8,则ab+bc+ca的最大值为
数学已知ab/(a+b)=1 bc/(b+c)=1/2 ac/(a+c)=1/3 则 abc/(ab+bc+ca)的值是
已知实数a,b,c满足a2+b2=1,b2+c2=2,c2+a2=2,则ab+bc+ca的最小值为( )
已知:a、b、c∈(0,+∞)且a+b+c=1,试比较a^2+b^2+c^2,ab+bc+ca,1/3的大小
a,b,c大于等于0,ab+bc+ca=3,求1/(1+a^2)+1/(1+b^2)+1/(1+c^2)的最小值