已知四棱柱ABCD-A'B'C'D'中,底面ABCD是正方形且侧棱垂直于底面,AB=1,AA'=2,点E为CC'中点,点
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 07:34:18
已知四棱柱ABCD-A'B'C'D'中,底面ABCD是正方形且侧棱垂直于底面,AB=1,AA'=2,点E为CC'中点,点F为BD'中点.
(1)求证:EF为BD'与CC'的公垂线
(2)求D'到平面BDE的距离
(用向量法)
(1)求证:EF为BD'与CC'的公垂线
(2)求D'到平面BDE的距离
(用向量法)
以A为原点,AB为X轴,AD为Y轴,AA'为Z轴建立空间坐标系,
B(1,0,0),C(1,1,0),D(0,1,2),E(1,1,0),C'(1,1,1),
F(1/2,1/2,1),D'(0,1,2)
向量EF=(-1/2,-1/2,0),向量CC'=(0,0,1), 向量BD'=(-1,1,2),
向量EF·BD'=1/2-1/2=0,
∴向量EF⊥BD',
向量EF·CC‘=0+0+0=0,
∴向量EF⊥CC',
∴EF是BD'与CC'的公垂线.
2、设n为平面BDE的法向量,n=(x1,y1,1),
向量BE=(0,1,1),向量BD=(-1,1,0),
n·BE=y1+1=0,y1=-1,
n·BD=-x1+y1=0,
x1=y1=-1,
n=(-1,-1,1),
向量D'E=(1,0,-1),
n·D'E=-1-1=-2,
|n|=√3,
|D'E|=√2,
设D'E和法向量n成角为θ,cosθ=-2/√6,
取锐角余弦值为2/√6,
设D'至平面BDE距离为d,d=|D'E||*cosθ=√2*2/√6=2√3/3,
∴D'到平面BDE的距离为2√3/3.
B(1,0,0),C(1,1,0),D(0,1,2),E(1,1,0),C'(1,1,1),
F(1/2,1/2,1),D'(0,1,2)
向量EF=(-1/2,-1/2,0),向量CC'=(0,0,1), 向量BD'=(-1,1,2),
向量EF·BD'=1/2-1/2=0,
∴向量EF⊥BD',
向量EF·CC‘=0+0+0=0,
∴向量EF⊥CC',
∴EF是BD'与CC'的公垂线.
2、设n为平面BDE的法向量,n=(x1,y1,1),
向量BE=(0,1,1),向量BD=(-1,1,0),
n·BE=y1+1=0,y1=-1,
n·BD=-x1+y1=0,
x1=y1=-1,
n=(-1,-1,1),
向量D'E=(1,0,-1),
n·D'E=-1-1=-2,
|n|=√3,
|D'E|=√2,
设D'E和法向量n成角为θ,cosθ=-2/√6,
取锐角余弦值为2/√6,
设D'至平面BDE距离为d,d=|D'E||*cosθ=√2*2/√6=2√3/3,
∴D'到平面BDE的距离为2√3/3.
已知直四棱柱ABCD—A′B′C′D′的底面是菱形, ,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
如图,四棱柱ABCD-A’B’C’D’中,底面ABCD是为正方形, 侧棱AA’⊥底面 ABCD,AB
已知直四棱柱ABCD-A′B′C′D′的底面是菱形,∠ABC=60°,E、F分别是棱CC′与BB′上的点,且EC=BC=
在四棱柱ABCD—A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是正方形,AA1=2,AB=1,点E是棱CC1的
如图,已知正四棱锥ABCD-A`B`C`D`中,底面边长AB=2,侧棱BB`=4,过点B作B`C的垂线交侧棱CC`于点E
四棱柱ABCD-A'B'C'D'的底面ABCD是菱形.且A'B=A'D 求对角面AA'C'C垂直截面A'BD
在四棱柱P-ABCD中,PD垂直底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.
直三棱柱体积问题已知直三棱柱ABC-A'B'C'的底面积为4,D,E,F分别为侧棱AA',BB',CC'上的点,且AD=
四棱锥P-ABCD中,底面ABCD为矩形,PA垂直底面ABCD,PA=AB=根号2,点E是棱PB的中点
在直三棱柱(侧棱垂直于底面的三棱柱)ABC-A’B’C’中,底面ABC为正三角形,且AB=AA’=1,
P-ABCD是底面为平行四边形的四棱柱,AB垂直AC,PA垂直面ABCD,且PA=AB,点E事PD重点,求证PB//面A
在底面为平行四边形的四棱锥P-ABCD中,AB垂直AC,PA垂直平面ABCD,且PA=AB,点E是PD中点