设z=f(x,y)是可微函数,x=rcosθ,y=rsinθ,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 22:22:47
设z=f(x,y)是可微函数,x=rcosθ,y=rsinθ,
证明(ðz/ðx)²+(ðz/ðy)²=(ðz/ðr)²+(1/r·ðz/ðθ)²
证明(ðz/ðx)²+(ðz/ðy)²=(ðz/ðr)²+(1/r·ðz/ðθ)²
dz=df(x,y)=f'1dx+f'2dy;
dz/dx=f'1;dz/dy=f'2 这里的f‘1,f’2就是f‘x,f’y;1,2代表的是变量的位置
于是(ðz/ðx)²+(ðz/ðy)²=(f'1)^2+(f'2)^2
z=f(rcosθ,rsinθ),dz=f'1*cosxdr+f'2*sinxdr
dz/dr=f'1cox+f'2sinx
(ðz/ðr)²=(f'1)^2+(f'2)^2+2f'1*f'2*cosx*sinx
dz/dθ=-rf'1sinθ+rf'2cosθ
(1/r·ðz/ðθ)²=(f'1)^2+(f'2)^2-2f'1*f'2*cosx*sinx
于是(ðz/ðr)²+(1/r·ðz/ðθ)²=(f'1)^2(cos^2θ+sin^2θ)+(f'2)^2(cos^2θ+sin^2θ)==(f'1)^2+(f'2)^2于是(ðz/ðx)²+(ðz/ðy)²=(ðz/ðr)²+(1/r·ðz/ðθ)²
dz/dx=f'1;dz/dy=f'2 这里的f‘1,f’2就是f‘x,f’y;1,2代表的是变量的位置
于是(ðz/ðx)²+(ðz/ðy)²=(f'1)^2+(f'2)^2
z=f(rcosθ,rsinθ),dz=f'1*cosxdr+f'2*sinxdr
dz/dr=f'1cox+f'2sinx
(ðz/ðr)²=(f'1)^2+(f'2)^2+2f'1*f'2*cosx*sinx
dz/dθ=-rf'1sinθ+rf'2cosθ
(1/r·ðz/ðθ)²=(f'1)^2+(f'2)^2-2f'1*f'2*cosx*sinx
于是(ðz/ðr)²+(1/r·ðz/ðθ)²=(f'1)^2(cos^2θ+sin^2θ)+(f'2)^2(cos^2θ+sin^2θ)==(f'1)^2+(f'2)^2于是(ðz/ðx)²+(ðz/ðy)²=(ðz/ðr)²+(1/r·ðz/ðθ)²
设z=(x^2)y-x(y^2),而x=rcosθ,y=rsinθ,求r的偏导数和θ的偏导数
在直角坐标系中,x=a+rcosθ‘y=b+rsinθ
设u=u(x,y)有二阶连续偏导数,证明在极坐标变换x=rcosθ,y=rsinθ下有
在极坐标交换,x=rcosθ,y=rsinθ下,偏f/偏r=(偏f/偏x)cosθ+(偏f/偏y)sinθ=(1/r)[
设r>0,那么直线xcosθ+ysinθ=r(θ是常数)与圆x=rcosφy=rsinφ(φ是参数)的位置关系是( )
设圆{x=3+rcosθ y=-5+rsinθ, 上有且仅有两点到直线-4x+3y+2=0的距离等于1,则r的取值范围
圆x=r+rcosθ y=r/2+rsinθ {θ为参数,r>0}的直径为4 则愿新的坐标是 要求步骤
极坐标方程问题x = rcos(θ),y = rsin(θ),这两条公式是怎么推导出来的,麻烦给我一个详细的推导过程,
设f(x,y)为连续函数,则二次积分∫(0~4/∏)dθ∫(0~1)f(rcosθ,rsinθ)rdr的直角坐标形式为?
高数微积分问题x=rsinθ y=rcosθdx=rcosθdθ dy=cosθdrdxdy=rdrdθcosθ方哪去了
集合{(x,y)/(x-rcosθ)²+(y-rsinθ)²≤1},其中0≤r≤1,0≤θ≤π,对应
圆的参数方程x=a+rcosα,y=b+rsinα与直线y-x=0相切,求半径r?